Neural network application to state estimation computation

T. Nakagawa, Y. Hayashi, S. Iwamoto
{"title":"Neural network application to state estimation computation","authors":"T. Nakagawa, Y. Hayashi, S. Iwamoto","doi":"10.1109/ANN.1991.213480","DOIUrl":null,"url":null,"abstract":"In power systems state estimation computation takes an important role in security controls, and the weighted least squares method and the fast decoupled method are widely-used at present. State estimation computation using the existing Von-Neumann type computer is reaching a limit as far as the solution techniques are concerned, and it is very difficult to expect much faster methods. In order to solve the problem, the authors employ a neural network theory, the Hopfield network theory, which has an ultra parallel algorithm and is different from the existing calculating algorithms, for state estimation computation. A feasibility study using a 6 bus system is shown.<<ETX>>","PeriodicalId":119713,"journal":{"name":"Proceedings of the First International Forum on Applications of Neural Networks to Power Systems","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the First International Forum on Applications of Neural Networks to Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANN.1991.213480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

Abstract

In power systems state estimation computation takes an important role in security controls, and the weighted least squares method and the fast decoupled method are widely-used at present. State estimation computation using the existing Von-Neumann type computer is reaching a limit as far as the solution techniques are concerned, and it is very difficult to expect much faster methods. In order to solve the problem, the authors employ a neural network theory, the Hopfield network theory, which has an ultra parallel algorithm and is different from the existing calculating algorithms, for state estimation computation. A feasibility study using a 6 bus system is shown.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
神经网络在状态估计计算中的应用
在电力系统中,状态估计计算在安全控制中起着重要的作用,目前最常用的方法是加权最小二乘法和快速解耦法。就求解技术而言,使用现有的冯-诺伊曼型计算机进行状态估计计算已经达到了极限,并且很难期望更快的方法。为了解决这一问题,作者采用神经网络理论——Hopfield网络理论进行状态估计计算,该理论与现有的计算算法不同,具有超并行算法。展示了采用6总线系统的可行性研究
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Finite precision error analysis for neural network learning Hybrid expert system neural network hierarchical architecture for classifying power system contingencies Neural network application to state estimation computation Short term electric load forecasting using an adaptively trained layered perceptron Neural networks for topology determination of power systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1