Hybrid Video Compression Using Selective Keyframe Identification and Patch-Based Super-Resolution

J. Glaister, Calvin Chan, M. Frankovich, Adrian Tang, A. Wong
{"title":"Hybrid Video Compression Using Selective Keyframe Identification and Patch-Based Super-Resolution","authors":"J. Glaister, Calvin Chan, M. Frankovich, Adrian Tang, A. Wong","doi":"10.1109/ISM.2011.25","DOIUrl":null,"url":null,"abstract":"This paper details a novel video compression pipeline using selective key frame identification to encode video and patch-based super-resolution to decode for playback. Selective key frame identification uses shot boundary detection and frame differencing methods to identify representative frames which are subsequently kept in high resolution within the compressed container. All other non-key frames are downscaled for compression purposes. Patch-based super-resolution finds similar patches between an up scaled non-key frame and the associated, high-resolution key frame to regain lost detail via a super-resolution process. The algorithm was integrated into the H.264 video compression pipeline tested on web cam, cartoon and live-action video for both streaming and storage purposes. Experimental results show that the proposed hybrid video compression pipeline successfully achieved higher compression ratios than standard H.264, while achieving superior video quality than low resolution H.264 at similar compression ratios.","PeriodicalId":339410,"journal":{"name":"2011 IEEE International Symposium on Multimedia","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Symposium on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISM.2011.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper details a novel video compression pipeline using selective key frame identification to encode video and patch-based super-resolution to decode for playback. Selective key frame identification uses shot boundary detection and frame differencing methods to identify representative frames which are subsequently kept in high resolution within the compressed container. All other non-key frames are downscaled for compression purposes. Patch-based super-resolution finds similar patches between an up scaled non-key frame and the associated, high-resolution key frame to regain lost detail via a super-resolution process. The algorithm was integrated into the H.264 video compression pipeline tested on web cam, cartoon and live-action video for both streaming and storage purposes. Experimental results show that the proposed hybrid video compression pipeline successfully achieved higher compression ratios than standard H.264, while achieving superior video quality than low resolution H.264 at similar compression ratios.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用选择性关键帧识别和基于补丁的超分辨率混合视频压缩
本文详细介绍了一种新的视频压缩管道,使用选择性关键帧识别对视频进行编码,并使用基于补丁的超分辨率解码进行回放。选择性关键帧识别采用镜头边界检测和帧差分方法识别具有代表性的帧,然后将这些帧以高分辨率保存在压缩容器内。所有其他非关键帧都被压缩。基于补丁的超分辨率在放大的非关键帧和相关的高分辨率关键帧之间找到类似的补丁,通过超分辨率过程恢复丢失的细节。该算法被集成到H.264视频压缩管道中,在网络摄像头、卡通和真人视频中进行了流媒体和存储测试。实验结果表明,所提出的混合视频压缩管道成功地获得了比标准H.264更高的压缩比,同时在相同压缩比下获得了比低分辨率H.264更好的视频质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Subjective Evaluation of 3D Iptv Broadcasting Implementations Considering Coding and Transmission Degradation A Low Memory Requirements Execution Flow for the Non-Uniform Grid Projection Super-Resolution Algorithm 3D Image Browsing on Mobile Devices Hybrid Video Compression Using Selective Keyframe Identification and Patch-Based Super-Resolution Automatic Bird Species Identification for Large Number of Species
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1