Computer simulation of the fracture of carbon nanotubes in a hydrogen environment

L. Zhou, S. Shi
{"title":"Computer simulation of the fracture of carbon nanotubes in a hydrogen environment","authors":"L. Zhou, S. Shi","doi":"10.1080/01418610208240433","DOIUrl":null,"url":null,"abstract":"Abstract Molecular dynamics simulations have been performed to study the mechanical properties of armchair-type single-walled and multiple-walled carbon nanotubes under tensile loading with and without hydrogen storage. Advanced bond order potentials were used in the simulations. Hydrogen molecules stored inside or outside nanotubes reduced the fracture strength of nanotubes. During the deformation, some C‒C bonds were broken and reconstructed. If hydrogen molecules were around, hydrogen atoms would compete with the carbon atoms, to form the H‒C bonds, which reduces the mechanical strength of nanotubes. Such detrimental effect of hydrogen is enhanced if the curvature of the tubes is increased, or if hydrogen is stored in a multiple-walled carbon nanotube.","PeriodicalId":114492,"journal":{"name":"Philosophical Magazine A","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Magazine A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/01418610208240433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract Molecular dynamics simulations have been performed to study the mechanical properties of armchair-type single-walled and multiple-walled carbon nanotubes under tensile loading with and without hydrogen storage. Advanced bond order potentials were used in the simulations. Hydrogen molecules stored inside or outside nanotubes reduced the fracture strength of nanotubes. During the deformation, some C‒C bonds were broken and reconstructed. If hydrogen molecules were around, hydrogen atoms would compete with the carbon atoms, to form the H‒C bonds, which reduces the mechanical strength of nanotubes. Such detrimental effect of hydrogen is enhanced if the curvature of the tubes is increased, or if hydrogen is stored in a multiple-walled carbon nanotube.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
碳纳米管在氢环境中断裂的计算机模拟
通过分子动力学模拟研究了扶手椅型单壁和多壁碳纳米管在拉伸载荷下的力学性能。模拟中采用了先进的键序势。氢分子的存在降低了纳米管的断裂强度。在变形过程中,部分碳碳键断裂并重建。如果周围有氢分子,氢原子就会与碳原子竞争,形成碳氢键,从而降低纳米管的机械强度。如果增加碳纳米管的曲率,或者将氢储存在多壁碳纳米管中,则会增强氢的这种有害影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Transmission electron microscopy observations and micromechanical/continuum models for the effect of hydrogen on the mechanical behaviour of metals Computer simulation of the fracture of carbon nanotubes in a hydrogen environment Coalescence of two particles with different sizes by surface diffusion An investigation on the transformation of the icosahedral phase in the Al-Fe-Cu system during mechanical milling and subsequent annealing Fracture characteristics of wood under mode I, mode II and mode III loading
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1