Blade Angle Control Using TLBO Based Modified Adaptive Controller

Ahmed M. Shawqran, A. El-Marhomy, M. Attia
{"title":"Blade Angle Control Using TLBO Based Modified Adaptive Controller","authors":"Ahmed M. Shawqran, A. El-Marhomy, M. Attia","doi":"10.1109/ICCES51560.2020.9334607","DOIUrl":null,"url":null,"abstract":"Wind energy is one of the fastest-growing energy sources of green energy in the world. Research efforts are aimed to address the challenges to greater use of wind energy. Thus, the paper presents a blade angle control based on a new modified adaptive PI controller. The controller relies on teaching learning-based optimization algorithms (TLBO) to optimally evaluate its initials. The effectiveness of the proposed controller is verified by simulation results for six 1.5-MW wind turbines doubly fed induction generator (DFIG) system. The validation composes a comparison with conventional adaptive controller under normal and faulty conditions. The modified adaptive PI showed improved mechanical and electrical behaviors for the wind turbine relying on its second order amplifier. The amplifier works as analogue filter that improves the system dynamic characteristics. The new controller showed robustness to the changes in system parameters and the nonlinearity of the wind turbine systems. The superiority of the new controller has been proved when compared with conventional PID controller.","PeriodicalId":247183,"journal":{"name":"2020 15th International Conference on Computer Engineering and Systems (ICCES)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 15th International Conference on Computer Engineering and Systems (ICCES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCES51560.2020.9334607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Wind energy is one of the fastest-growing energy sources of green energy in the world. Research efforts are aimed to address the challenges to greater use of wind energy. Thus, the paper presents a blade angle control based on a new modified adaptive PI controller. The controller relies on teaching learning-based optimization algorithms (TLBO) to optimally evaluate its initials. The effectiveness of the proposed controller is verified by simulation results for six 1.5-MW wind turbines doubly fed induction generator (DFIG) system. The validation composes a comparison with conventional adaptive controller under normal and faulty conditions. The modified adaptive PI showed improved mechanical and electrical behaviors for the wind turbine relying on its second order amplifier. The amplifier works as analogue filter that improves the system dynamic characteristics. The new controller showed robustness to the changes in system parameters and the nonlinearity of the wind turbine systems. The superiority of the new controller has been proved when compared with conventional PID controller.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于TLBO的改进自适应叶片角度控制
风能是世界上发展最快的绿色能源之一。研究工作旨在解决更多使用风能的挑战。因此,本文提出了一种基于改进的自适应PI控制器的叶片角控制方法。控制器依赖于基于教学学习的优化算法(TLBO)来最优地评估其首字母。通过对6台1.5 mw风力发电机组双馈感应发电机(DFIG)系统的仿真验证了所提控制器的有效性。在正常和故障情况下,与传统自适应控制器进行了验证比较。改进后的自适应PI依靠其二阶放大器改善了风力机的机械和电气性能。放大器作为模拟滤波器,改善了系统的动态特性。该控制器对系统参数的变化和系统的非线性具有较强的鲁棒性。通过与传统PID控制器的比较,证明了该控制器的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Proposed System for the Identification of Modem Arabic Poetry Meters (IMAP) Evaluating the Modsecurity Web Application Firewall Against SQL Injection Attacks Low-Power Low-Complexity FM-UWB Transmitter in 130nm CMOS for WBAN Applications Blade Angle Control Using TLBO Based Modified Adaptive Controller Clustering Research Papers Using Genetic Algorithm Optimized Self-Organizing Maps
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1