Clustering Research Papers Using Genetic Algorithm Optimized Self-Organizing Maps

Reham Fathy M. Ahmed, Cherif R. Salama, Hani M. K. Mahdi
{"title":"Clustering Research Papers Using Genetic Algorithm Optimized Self-Organizing Maps","authors":"Reham Fathy M. Ahmed, Cherif R. Salama, Hani M. K. Mahdi","doi":"10.1109/ICCES51560.2020.9334573","DOIUrl":null,"url":null,"abstract":"With the huge amount of published research papers, retrieving relevant information is a difficult task for any researcher. Effective clustering algorithms can help improve and simplify the retrieval process. Here, we propose an approach for automatic clustering for text document using a Self-Organizing Map (SOM). It is one of unsupervised artificial neural network that widely used for data analysis, data compression, clustering, and data mining. The quality and accuracy of a SOM algorithm depends on the selection of values for some of its parameters which are its initial learning rate, SOM matrix dimensions, and the number of iterations. Best values are typically selected using trial and error; however, in the current paper we suggest a more systematic approach to parameters optimization using the genetic algorithm. The proposed method is applied to cluster 3 scientific papers datasets using their keywords. Similar research papers were mapped closer to each other. Clustering results were validated using the Dunn index.","PeriodicalId":247183,"journal":{"name":"2020 15th International Conference on Computer Engineering and Systems (ICCES)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 15th International Conference on Computer Engineering and Systems (ICCES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCES51560.2020.9334573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

With the huge amount of published research papers, retrieving relevant information is a difficult task for any researcher. Effective clustering algorithms can help improve and simplify the retrieval process. Here, we propose an approach for automatic clustering for text document using a Self-Organizing Map (SOM). It is one of unsupervised artificial neural network that widely used for data analysis, data compression, clustering, and data mining. The quality and accuracy of a SOM algorithm depends on the selection of values for some of its parameters which are its initial learning rate, SOM matrix dimensions, and the number of iterations. Best values are typically selected using trial and error; however, in the current paper we suggest a more systematic approach to parameters optimization using the genetic algorithm. The proposed method is applied to cluster 3 scientific papers datasets using their keywords. Similar research papers were mapped closer to each other. Clustering results were validated using the Dunn index.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用遗传算法优化自组织图的聚类研究论文
由于已发表的研究论文数量巨大,检索相关信息对任何研究人员来说都是一项艰巨的任务。有效的聚类算法可以帮助改进和简化检索过程。本文提出了一种基于自组织映射(SOM)的文本文档自动聚类方法。它是一种无监督人工神经网络,广泛应用于数据分析、数据压缩、聚类和数据挖掘等领域。SOM算法的质量和准确性取决于它的一些参数值的选择,这些参数是它的初始学习率、SOM矩阵维数和迭代次数。最佳值通常是通过试错法来选择的;然而,在当前的论文中,我们提出了一个更系统的方法来参数优化使用遗传算法。将该方法应用于3篇科技论文数据集的关键词聚类。相似的研究论文被绘制得更近。使用Dunn指数对聚类结果进行验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Proposed System for the Identification of Modem Arabic Poetry Meters (IMAP) Evaluating the Modsecurity Web Application Firewall Against SQL Injection Attacks Low-Power Low-Complexity FM-UWB Transmitter in 130nm CMOS for WBAN Applications Blade Angle Control Using TLBO Based Modified Adaptive Controller Clustering Research Papers Using Genetic Algorithm Optimized Self-Organizing Maps
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1