Huaxin Liu, Qiang Huang, Weimin Zhang, Xuechao Chen, Zhangguo Yu, Libo Meng, Lei Bao, A. Ming, Yan Huang, K. Hashimoto, A. Takanishi
{"title":"Cat-inspired mechanical design of self-adaptive toes for a legged robot","authors":"Huaxin Liu, Qiang Huang, Weimin Zhang, Xuechao Chen, Zhangguo Yu, Libo Meng, Lei Bao, A. Ming, Yan Huang, K. Hashimoto, A. Takanishi","doi":"10.1109/IROS.2016.7759378","DOIUrl":null,"url":null,"abstract":"Cats have protractible claws to fold their tips to keep them sharp. They protract claws while hunting and pawing on slippery surfaces. Protracted claws by tendons and muscles of toes can help cats anchoring themselves steady while their locomotion trends to slip and releasing the hold while they retract claws intentionally. This research proposes a kind of modularized self-adaptive toe mechanism inspired by cat claws to improve the extremities' contact performance for legged robot. The mechanism is constructed with four-bar linkage actuated by contact reaction force and retracted by applied spring tension. A feasible mechanical design based on several essential parameters is introduced and an integrated Sole-Toe prototype is built for experimental evaluation. Mechanical self-adaption and actual contact performance on specific surface have been evaluated respectively on a biped walking platform and a bench-top mechanical testing.","PeriodicalId":296337,"journal":{"name":"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2016.7759378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Cats have protractible claws to fold their tips to keep them sharp. They protract claws while hunting and pawing on slippery surfaces. Protracted claws by tendons and muscles of toes can help cats anchoring themselves steady while their locomotion trends to slip and releasing the hold while they retract claws intentionally. This research proposes a kind of modularized self-adaptive toe mechanism inspired by cat claws to improve the extremities' contact performance for legged robot. The mechanism is constructed with four-bar linkage actuated by contact reaction force and retracted by applied spring tension. A feasible mechanical design based on several essential parameters is introduced and an integrated Sole-Toe prototype is built for experimental evaluation. Mechanical self-adaption and actual contact performance on specific surface have been evaluated respectively on a biped walking platform and a bench-top mechanical testing.