21.6 A 12nW always-on acoustic sensing and object recognition microsystem using frequency-domain feature extraction and SVM classification

Seokhyeon Jeong, Yu Chen, Taekwang Jang, J. M. Tsai, D. Blaauw, Hun-Seok Kim, D. Sylvester
{"title":"21.6 A 12nW always-on acoustic sensing and object recognition microsystem using frequency-domain feature extraction and SVM classification","authors":"Seokhyeon Jeong, Yu Chen, Taekwang Jang, J. M. Tsai, D. Blaauw, Hun-Seok Kim, D. Sylvester","doi":"10.1109/ISSCC.2017.7870411","DOIUrl":null,"url":null,"abstract":"IoT devices are becoming increasingly intelligent and context-aware. Sound is an attractive sensory modality because it is information-rich but not as computationally demanding as alternatives such as vision. New applications of ultra-low power (ULP), ‘always-on’ intelligent acoustic sensing includes agricultural monitoring to detect pests or precipitation, infrastructure health tracking to recognize acoustic symptoms, and security/safety monitoring to identify dangerous conditions. A major impediment for the adoption of always-on, context-aware sensing is power consumption, particularly for ultra-small IoT devices requiring long-term operation without battery replacement. To sustain operation with a 1mm2 solar cell in ambient light (100lux) or achieve a lifetime of 10 years using a button cell battery (2mAh), <20nW power consumption must be achieved, which is more than 2 orders of magnitude lower than current state-of-the-art acoustic sensing systems [1,2]. More broadly a previous ULP signal acquisition IC [3] consumes just 3nW while 64nW ECG monitoring system [4] includes back-end classification, however there are no sub-20nW complete sensing systems with both analog frontend and digital backend.","PeriodicalId":269679,"journal":{"name":"2017 IEEE International Solid-State Circuits Conference (ISSCC)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Solid-State Circuits Conference (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2017.7870411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

IoT devices are becoming increasingly intelligent and context-aware. Sound is an attractive sensory modality because it is information-rich but not as computationally demanding as alternatives such as vision. New applications of ultra-low power (ULP), ‘always-on’ intelligent acoustic sensing includes agricultural monitoring to detect pests or precipitation, infrastructure health tracking to recognize acoustic symptoms, and security/safety monitoring to identify dangerous conditions. A major impediment for the adoption of always-on, context-aware sensing is power consumption, particularly for ultra-small IoT devices requiring long-term operation without battery replacement. To sustain operation with a 1mm2 solar cell in ambient light (100lux) or achieve a lifetime of 10 years using a button cell battery (2mAh), <20nW power consumption must be achieved, which is more than 2 orders of magnitude lower than current state-of-the-art acoustic sensing systems [1,2]. More broadly a previous ULP signal acquisition IC [3] consumes just 3nW while 64nW ECG monitoring system [4] includes back-end classification, however there are no sub-20nW complete sensing systems with both analog frontend and digital backend.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
21.6基于频域特征提取和SVM分类的12nW恒在线声传感与目标识别微系统
物联网设备正变得越来越智能和具有上下文感知能力。声音是一种有吸引力的感官形式,因为它信息丰富,但不像视觉等替代方式那样需要计算。超低功耗(ULP)“永远在线”智能声学传感的新应用包括检测害虫或降水的农业监测,识别声学症状的基础设施健康跟踪,以及识别危险条件的安全/安全监测。采用始终在线、环境感知传感的主要障碍是功耗,特别是对于需要长期运行而无需更换电池的超小型物联网设备。为了在环境光(100lux)下维持1mm2太阳能电池的运行,或使用纽扣电池(2mAh)实现10年的使用寿命,必须实现<20nW的功耗,这比当前最先进的声学传感系统低两个数量级[1,2]。更广泛地说,以前的ULP信号采集IC[3]仅消耗3nW,而64nW的心电监测系统[4]包括后端分类,但是没有低于20nw的完整的模拟前端和数字后端传感系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
20.7 A 13.8µW binaural dual-microphone digital ANSI S1.11 filter bank for hearing aids with zero-short-circuit-current logic in 65nm CMOS 21.6 A 12nW always-on acoustic sensing and object recognition microsystem using frequency-domain feature extraction and SVM classification 7.4 A 915MHz asymmetric radio using Q-enhanced amplifier for a fully integrated 3×3×3mm3 wireless sensor node with 20m non-line-of-sight communication 13.5 A 0.35-to-2.6GHz multilevel outphasing transmitter with a digital interpolating phase modulator enabling up to 400MHz instantaneous bandwidth 5.1 A 5×80W 0.004% THD+N automotive multiphase Class-D audio amplifier with integrated low-latency ΔΣ ADCs for digitized feedback after the output filter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1