Robust real-time chest compression rate detection from smartphone video

Øyvind Meinich-Bache, K. Engan, T. S. Birkenes, H. Myklebust
{"title":"Robust real-time chest compression rate detection from smartphone video","authors":"Øyvind Meinich-Bache, K. Engan, T. S. Birkenes, H. Myklebust","doi":"10.1109/ISPA.2017.8073560","DOIUrl":null,"url":null,"abstract":"Globally one of our major mortality challenges is out-of-hospital cardiac arrest. Good quality cardiopulmonary resuscitation (CPR) is extremely important for the chance of survival after cardiac arrest. Research has shown that telephone assisted guidance from the dispatcher to the bystander can improve the CPR quality provided to the patient. Some recent work has proposed to use the accelerometer in a bystander's smartphone to estimate compression rates, but this demands the phone to be placed on the patient during compression. Our research group has previously proposed a real-time application for bystander and dispatcher feedback using the smartphone camera to estimate the chest compression rate while the smartphone is placed flat on the ground. Some shortcomings were observed with the application in high noise situations. In this paper we propose a robust method where we have modeled and parametrized the power specter density to distinguish between noisy situations, improved the update procedure for the dynamic region of interest and added post-processing steps to suppress noise. The proposed method provides excellent results with acceptable performance at 99.8% of the time testing different rates in high and low noise situations, 99.5% in a disturbance test, and 92.5% of the time during random movements.","PeriodicalId":117602,"journal":{"name":"Proceedings of the 10th International Symposium on Image and Signal Processing and Analysis","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th International Symposium on Image and Signal Processing and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPA.2017.8073560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Globally one of our major mortality challenges is out-of-hospital cardiac arrest. Good quality cardiopulmonary resuscitation (CPR) is extremely important for the chance of survival after cardiac arrest. Research has shown that telephone assisted guidance from the dispatcher to the bystander can improve the CPR quality provided to the patient. Some recent work has proposed to use the accelerometer in a bystander's smartphone to estimate compression rates, but this demands the phone to be placed on the patient during compression. Our research group has previously proposed a real-time application for bystander and dispatcher feedback using the smartphone camera to estimate the chest compression rate while the smartphone is placed flat on the ground. Some shortcomings were observed with the application in high noise situations. In this paper we propose a robust method where we have modeled and parametrized the power specter density to distinguish between noisy situations, improved the update procedure for the dynamic region of interest and added post-processing steps to suppress noise. The proposed method provides excellent results with acceptable performance at 99.8% of the time testing different rates in high and low noise situations, 99.5% in a disturbance test, and 92.5% of the time during random movements.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于智能手机视频的鲁棒实时胸压率检测
在全球范围内,我们面临的主要死亡率挑战之一是院外心脏骤停。高质量的心肺复苏(CPR)对心脏骤停后的生存机会至关重要。研究表明,从调度员到旁观者的电话辅助指导可以提高提供给患者的CPR质量。最近的一些研究建议使用旁观者智能手机上的加速计来估计压缩率,但这需要在压缩期间将手机放在病人身上。我们的研究小组之前提出了一个实时应用程序,让旁观者和调度员反馈使用智能手机摄像头来估计胸部压缩率,而智能手机被平放在地上。在高噪声环境下的应用也存在一些不足。在本文中,我们提出了一种鲁棒的方法,我们对功率幽灵密度进行建模和参数化以区分噪声情况,改进了动态感兴趣区域的更新过程,并增加了后处理步骤以抑制噪声。该方法在高噪声和低噪声情况下测试不同速率的时间为99.8%,在干扰测试中为99.5%,在随机运动时为92.5%,具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust real-time chest compression rate detection from smartphone video Image registration with subpixel accuracy of DCT-sign phase correlation with real subpixel shifted images Choosing an accurate number of mel frequency cepstral coefficients for audio classification purpose Blind determination of quality of JPEG compressed images Differentiating ureter and arteries in the pelvic via endoscope using deep neural network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1