Laser Ablation of Crystalline Material With and Without Water on Material Surface

Wenlong Yao, Li Yan, Yunshu Qi, N. Mei
{"title":"Laser Ablation of Crystalline Material With and Without Water on Material Surface","authors":"Wenlong Yao, Li Yan, Yunshu Qi, N. Mei","doi":"10.1115/mnhmt2019-4211","DOIUrl":null,"url":null,"abstract":"\n The phase and morphological changes of crystalline material during laser internal ablation with and without water on the material surface are studied using molecular dynamics simulations. The atomic image of the material morphology was obtained by recording the velocity and position variation of atoms. Temperature distribution contour of the crystalline material along the ablation process are charted by statistical physics method. Furthermore, density variation and phase variation contour of water are also charted. The results suggest that: First, during the ablation process of crystalline materials, energy transfer occurs between water and crystalline materials. Supercritical water is formed first, which restrains the sputtering of crystalline materials due to phase explosion and puts off the sputtering. Then the physical state of water changes from liquid to gaseous. Second, with water on the surface, the cavity shape is different from that without water, the width of upper part of cavity is decreased. Third, the volume of the cavity is affected by the thickness of the water layer.","PeriodicalId":331854,"journal":{"name":"ASME 2019 6th International Conference on Micro/Nanoscale Heat and Mass Transfer","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2019 6th International Conference on Micro/Nanoscale Heat and Mass Transfer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/mnhmt2019-4211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The phase and morphological changes of crystalline material during laser internal ablation with and without water on the material surface are studied using molecular dynamics simulations. The atomic image of the material morphology was obtained by recording the velocity and position variation of atoms. Temperature distribution contour of the crystalline material along the ablation process are charted by statistical physics method. Furthermore, density variation and phase variation contour of water are also charted. The results suggest that: First, during the ablation process of crystalline materials, energy transfer occurs between water and crystalline materials. Supercritical water is formed first, which restrains the sputtering of crystalline materials due to phase explosion and puts off the sputtering. Then the physical state of water changes from liquid to gaseous. Second, with water on the surface, the cavity shape is different from that without water, the width of upper part of cavity is decreased. Third, the volume of the cavity is affected by the thickness of the water layer.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
晶体材料表面有水和无水的激光烧蚀
采用分子动力学模拟方法研究了材料表面有水和无水激光内烧蚀过程中晶体材料的相和形态变化。通过记录原子的速度和位置变化,获得了材料形态的原子图像。用统计物理方法绘制了晶体材料在烧蚀过程中的温度分布曲线。此外,还绘制了水的密度变化和相位变化等值线图。结果表明:第一,在晶体材料烧蚀过程中,水与晶体材料之间发生能量传递。首先形成超临界水,超临界水抑制了晶状材料因相爆炸而溅射,延缓了溅射。然后水的物理状态由液态变为气态。其次,表面有水时,空腔形状与无水时不同,空腔上部宽度减小。第三,空腔的体积受水层厚度的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Start-Up Performance of Pulsating Heat Pipe With Communicating Pipe at Different Inclination Angles Laser Ablation of Crystalline Material With and Without Water on Material Surface A Method for Measuring Thermal Conductivity of Low-Dimensional Materials Based on DC Heating Experiment of Enhanced Pool Boiling Heat Transfer on Coupling Effects of Nano-Structure and Synergistic Micro-Channel Experimental and Theoretical Study on the Effect of Pressure and Surface Roughness on Thermal Contact Resistance With LMA As TIM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1