POSTER: Identifying Dynamic Data Structures in Malware

Thomas Rupprecht, Xi Chen, D. H. White, J. Mühlberg, H. Bos, Gerald Lüttgen
{"title":"POSTER: Identifying Dynamic Data Structures in Malware","authors":"Thomas Rupprecht, Xi Chen, D. H. White, J. Mühlberg, H. Bos, Gerald Lüttgen","doi":"10.1145/2976749.2989041","DOIUrl":null,"url":null,"abstract":"As the complexity of malware grows, so does the necessity of employing program structuring mechanisms during development. While control flow structuring is often obfuscated, the dynamic data structures employed by the program are typically untouched. We report on work in progress that exploits this weakness to identify dynamic data structures present in malware samples for the purposes of aiding reverse engineering and constructing malware signatures, which may be employed for malware classification. Using a prototype implementation, which combines the type recovery tool Howard and the identification tool Data Structure Investigator (DSI), we analyze data structures in Carberp and AgoBot malware. Identifying their data structures illustrates a challenging problem. To tackle this, we propose a new type recovery for binaries based on machine learning, which uses Howard's types to guide the search and DSI's memory abstraction for hypothesis evaluation.","PeriodicalId":432261,"journal":{"name":"Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2976749.2989041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

As the complexity of malware grows, so does the necessity of employing program structuring mechanisms during development. While control flow structuring is often obfuscated, the dynamic data structures employed by the program are typically untouched. We report on work in progress that exploits this weakness to identify dynamic data structures present in malware samples for the purposes of aiding reverse engineering and constructing malware signatures, which may be employed for malware classification. Using a prototype implementation, which combines the type recovery tool Howard and the identification tool Data Structure Investigator (DSI), we analyze data structures in Carberp and AgoBot malware. Identifying their data structures illustrates a challenging problem. To tackle this, we propose a new type recovery for binaries based on machine learning, which uses Howard's types to guide the search and DSI's memory abstraction for hypothesis evaluation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
海报:识别恶意软件中的动态数据结构
随着恶意软件复杂性的增长,在开发过程中采用程序结构机制的必要性也在增加。虽然控制流结构经常被混淆,但程序所使用的动态数据结构通常是不变的。我们报告了正在进行的工作,利用这一弱点来识别恶意软件样本中存在的动态数据结构,以帮助逆向工程和构建恶意软件签名,这些签名可能用于恶意软件分类。通过结合类型恢复工具Howard和识别工具Data Structure Investigator (DSI)的原型实现,我们分析了Carberp和AgoBot恶意软件中的数据结构。确定它们的数据结构说明了一个具有挑战性的问题。为了解决这个问题,我们提出了一种基于机器学习的二进制文件的新类型恢复,它使用霍华德的类型来指导搜索,并使用DSI的内存抽象来进行假设评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
∑oφoς: Forward Secure Searchable Encryption Accessorize to a Crime: Real and Stealthy Attacks on State-of-the-Art Face Recognition Message-Recovery Attacks on Feistel-Based Format Preserving Encryption iLock: Immediate and Automatic Locking of Mobile Devices against Data Theft Prefetch Side-Channel Attacks: Bypassing SMAP and Kernel ASLR
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1