Graph Tools for Social Network Analysis

N. Akhtar, Mohd Vasim Ahamad
{"title":"Graph Tools for Social Network Analysis","authors":"N. Akhtar, Mohd Vasim Ahamad","doi":"10.4018/978-1-5225-2814-2.CH002","DOIUrl":null,"url":null,"abstract":"A social network can be defined as a complex graph, which is a collection of nodes connected via edges. Nodes represent individual actors or people in the network, whereas edges define relationships among those actors. Most popular social networks are Facebook, Twitter, and Google+. To analyze these social networks, one needs specialized tools for analysis. This chapter presents a comparative study of such tools based on the general graph aspects as well as the social network mining aspects. While considering the general graph aspects, this chapter presents a comparative study of four social network analysis tools—NetworkX, Gephi, Pajek, and IGraph—based on the platform, execution time, graph types, algorithm complexity, input file format, and graph features. On the basis of the social network mining aspects, the chapter provides a comparative study on five specialized tools—Weka, NetMiner 4, RapidMiner, KNIME, and R—with respect to the supported mining tasks, main functionality, acceptable input formats, output formats, and platform used.","PeriodicalId":325408,"journal":{"name":"Research Anthology on Digital Transformation, Organizational Change, and the Impact of Remote Work","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Anthology on Digital Transformation, Organizational Change, and the Impact of Remote Work","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-5225-2814-2.CH002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

A social network can be defined as a complex graph, which is a collection of nodes connected via edges. Nodes represent individual actors or people in the network, whereas edges define relationships among those actors. Most popular social networks are Facebook, Twitter, and Google+. To analyze these social networks, one needs specialized tools for analysis. This chapter presents a comparative study of such tools based on the general graph aspects as well as the social network mining aspects. While considering the general graph aspects, this chapter presents a comparative study of four social network analysis tools—NetworkX, Gephi, Pajek, and IGraph—based on the platform, execution time, graph types, algorithm complexity, input file format, and graph features. On the basis of the social network mining aspects, the chapter provides a comparative study on five specialized tools—Weka, NetMiner 4, RapidMiner, KNIME, and R—with respect to the supported mining tasks, main functionality, acceptable input formats, output formats, and platform used.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
社交网络分析的图形工具
社交网络可以定义为一个复图,它是通过边连接的节点的集合。节点表示网络中的个体参与者或人员,而边缘则定义这些参与者之间的关系。最流行的社交网络是Facebook、Twitter和Google+。要分析这些社会网络,需要专门的分析工具。本章从一般图形方面和社会网络挖掘方面对这些工具进行了比较研究。在考虑一般图形方面的同时,本章基于平台、执行时间、图形类型、算法复杂性、输入文件格式和图形特征,对四种社交网络分析工具——networkx、Gephi、Pajek和igraph进行了比较研究。在社交网络挖掘方面的基础上,本章对五种专业工具(weka、NetMiner 4、RapidMiner、KNIME和r)进行了比较研究,包括支持的挖掘任务、主要功能、可接受的输入格式、输出格式和使用的平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impediments in Healthcare Digital Transformation ERP On-Premise or On-Demand The Destructive Effect of Complex Analytics on Innovativeness Organizational Change Management Virtual Leadership
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1