Effectiveness analysis of ACOS-Xco2 bias correction method with GEOS-Chem model results

Da Liu, L. Lei, Min Liu, Lijie Guo, Qian Wang, Nian Bie
{"title":"Effectiveness analysis of ACOS-Xco2 bias correction method with GEOS-Chem model results","authors":"Da Liu, L. Lei, Min Liu, Lijie Guo, Qian Wang, Nian Bie","doi":"10.1117/12.2204821","DOIUrl":null,"url":null,"abstract":"Satellite observations and model simulations are of two important data sources to study atmospheric carbon dioxide concentration. For analyzing and evaluating the bias correction method of ACOS dry-air column averaged CO2 (Xco2) product, the GEOS-Chem Xco2 simulations are selected according to observing time and locations of the ACOS product. The GEOS-Chem simulations of CO2 profiles are transformed to Xco2 data by convolving with satellite averaging kernels and pressure weighting functions. The GEOS-Chem Xco2 data are then compared with both bias uncorrected and bias corrected satellite retrievals of ACOS. The comparisons show that the bias uncorrected ACOS retrievals are on average 1.12ppm higher than the model Xco2 data, while the corrected ACOS retrievals are only on average 0.06ppm lower than the model Xco2 data. By assuming consistency between model Xco2 simulations and true atmospheric Xco2, this study indicates that the bias can be obvious decreased through the bias correction method, and the correction is effective and necessary for satellite Xco2 retrievals.","PeriodicalId":340728,"journal":{"name":"China Symposium on Remote Sensing","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"China Symposium on Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2204821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Satellite observations and model simulations are of two important data sources to study atmospheric carbon dioxide concentration. For analyzing and evaluating the bias correction method of ACOS dry-air column averaged CO2 (Xco2) product, the GEOS-Chem Xco2 simulations are selected according to observing time and locations of the ACOS product. The GEOS-Chem simulations of CO2 profiles are transformed to Xco2 data by convolving with satellite averaging kernels and pressure weighting functions. The GEOS-Chem Xco2 data are then compared with both bias uncorrected and bias corrected satellite retrievals of ACOS. The comparisons show that the bias uncorrected ACOS retrievals are on average 1.12ppm higher than the model Xco2 data, while the corrected ACOS retrievals are only on average 0.06ppm lower than the model Xco2 data. By assuming consistency between model Xco2 simulations and true atmospheric Xco2, this study indicates that the bias can be obvious decreased through the bias correction method, and the correction is effective and necessary for satellite Xco2 retrievals.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用GEOS-Chem模型结果分析ACOS-Xco2偏置校正方法的有效性
卫星观测和模式模拟是研究大气二氧化碳浓度的两个重要数据源。为了分析和评价ACOS干空气柱平均CO2 (Xco2)产品的偏差校正方法,根据ACOS产品的观测时间和地点选择了GEOS-Chem Xco2模拟。通过与卫星平均核函数和压力加权函数卷积,将GEOS-Chem模拟的CO2剖面转化为Xco2数据。然后将GEOS-Chem Xco2数据与未校正偏差和校正偏差的ACOS卫星检索数据进行比较。结果表明,偏差未校正的ACOS反演结果平均比模型Xco2数据高1.12ppm,而校正后的ACOS反演结果平均仅比模型Xco2数据低0.06ppm。通过假设模式Xco2模拟值与真实大气Xco2值的一致性,表明通过偏差校正方法可以明显减小偏差,校正对于卫星Xco2反演是有效且必要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on optimal path planning algorithm of task-oriented optical remote sensing satellites On-orbit geometric calibration and validation of Optical-1 HR Effectiveness analysis of ACOS-Xco2 bias correction method with GEOS-Chem model results Research on geometric rectification of the Large FOV Linear Array Whiskbroom Image Temporal and spatial analysis of global GOSAT XCO2 variations characteristics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1