Towards Visualization Scalability through Time Intervals and Hierarchical Organization of Monitoring Data

L. Schnorr, Guillaume Huard, P. Navaux
{"title":"Towards Visualization Scalability through Time Intervals and Hierarchical Organization of Monitoring Data","authors":"L. Schnorr, Guillaume Huard, P. Navaux","doi":"10.1109/CCGRID.2009.19","DOIUrl":null,"url":null,"abstract":"Highly distributed systems such as Grids are used today to the execution of large-scale parallel applications. The behavior analysis of these applications is not trivial. The complexity appears because of the event correlation among processes, external influences like time-sharing mechanisms and saturation of network links, and also the amount of data that registers the application behavior. Almost all visualization tools to analysis of parallel applications offer a space-time representation of the application behavior. This paper presents a novel technique that combines traces from grid applications with a treemap visualization of the data. With this combination, we dynamically create an annotated hierarchical structure that represents the application behavior for the selected time interval. The experiments in the grid show that we can readily use our technique to the analysis of large-scale parallel applications with thousands of processes.","PeriodicalId":118263,"journal":{"name":"2009 9th IEEE/ACM International Symposium on Cluster Computing and the Grid","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 9th IEEE/ACM International Symposium on Cluster Computing and the Grid","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGRID.2009.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Highly distributed systems such as Grids are used today to the execution of large-scale parallel applications. The behavior analysis of these applications is not trivial. The complexity appears because of the event correlation among processes, external influences like time-sharing mechanisms and saturation of network links, and also the amount of data that registers the application behavior. Almost all visualization tools to analysis of parallel applications offer a space-time representation of the application behavior. This paper presents a novel technique that combines traces from grid applications with a treemap visualization of the data. With this combination, we dynamically create an annotated hierarchical structure that represents the application behavior for the selected time interval. The experiments in the grid show that we can readily use our technique to the analysis of large-scale parallel applications with thousands of processes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过时间间隔和分层组织实现监控数据的可视化可扩展性
像网格这样的高度分布式系统现在被用于执行大规模并行应用程序。这些应用程序的行为分析并不简单。复杂性的出现是由于进程之间的事件相关性、外部影响(如分时机制和网络链接的饱和)以及记录应用程序行为的数据量。几乎所有用于分析并行应用程序的可视化工具都提供了应用程序行为的时空表示。本文提出了一种新的技术,将来自网格应用程序的轨迹与数据的树图可视化相结合。通过这种组合,我们可以动态地创建一个带注释的层次结构,该结构表示所选时间间隔的应用程序行为。在网格中的实验表明,我们可以很容易地将我们的技术应用于具有数千个进程的大规模并行应用程序的分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Visualization Scalability through Time Intervals and Hierarchical Organization of Monitoring Data Collusion Detection for Grid Computing Resource Information Aggregation in Hierarchical Grid Networks Distributed Indexing for Resource Discovery in P2P Networks Challenges and Opportunities on Parallel/Distributed Programming for Large-scale: From Multi-core to Clouds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1