Collusion Detection for Grid Computing

Eugen Staab, T. Engel
{"title":"Collusion Detection for Grid Computing","authors":"Eugen Staab, T. Engel","doi":"10.1109/CCGRID.2009.12","DOIUrl":null,"url":null,"abstract":"A common technique for result verification in grid computing is to delegate a computation redundantly to different workers and apply majority voting to the returned results. However, the technique is sensitive to \"collusion\" where a majority of malicious workers collectively returns the same incorrect result. In this paper, we propose a mechanism that identifies groups of colluding workers. The mechanism is based on the fact that colluders can succeed in a vote only when they hold the majority. This information allows us to build clusters of workers that voted similarly in the past, and so detect collusion. We find that the more strongly workers collude, the better they can be identified.","PeriodicalId":118263,"journal":{"name":"2009 9th IEEE/ACM International Symposium on Cluster Computing and the Grid","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 9th IEEE/ACM International Symposium on Cluster Computing and the Grid","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGRID.2009.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

Abstract

A common technique for result verification in grid computing is to delegate a computation redundantly to different workers and apply majority voting to the returned results. However, the technique is sensitive to "collusion" where a majority of malicious workers collectively returns the same incorrect result. In this paper, we propose a mechanism that identifies groups of colluding workers. The mechanism is based on the fact that colluders can succeed in a vote only when they hold the majority. This information allows us to build clusters of workers that voted similarly in the past, and so detect collusion. We find that the more strongly workers collude, the better they can be identified.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
网格计算中的合谋检测
网格计算结果验证的一种常用技术是将计算冗余地委托给不同的工作人员,并对返回的结果应用多数投票。然而,该技术对“共谋”很敏感,即大多数恶意工作人员集体返回相同的错误结果。在本文中,我们提出了一种识别串通工人群体的机制。该机制是基于这样一个事实,即共谋者只有在拥有多数席位时才能在投票中成功。这些信息使我们能够建立过去投票相似的工人集群,从而发现共谋。我们发现,员工之间的勾结越强烈,就越容易被识别出来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Visualization Scalability through Time Intervals and Hierarchical Organization of Monitoring Data Collusion Detection for Grid Computing Resource Information Aggregation in Hierarchical Grid Networks Distributed Indexing for Resource Discovery in P2P Networks Challenges and Opportunities on Parallel/Distributed Programming for Large-scale: From Multi-core to Clouds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1