Parallel-META: A high-performance computational pipeline for metagenomic data analysis

Xiaoquan Su, Jian Xu, K. Ning
{"title":"Parallel-META: A high-performance computational pipeline for metagenomic data analysis","authors":"Xiaoquan Su, Jian Xu, K. Ning","doi":"10.1109/ISB.2011.6033151","DOIUrl":null,"url":null,"abstract":"Metagenomics method directly sequences and analyzes genome information from microbial communities. There are usually more than hundreds of genomes from different microbial species in the same community, and the main computational tasks for metagenomics data analysis include taxonomical and functional component of these genomes in the microbial community. Metagenomic data analysis is both data- and computation- intensive, which requires extensive computational power. Most of the current metagenomic data analysis softwares were designed to be used on a single computer, which could not match with the fast increasing number of large metagenomic projects' computational requirements. Therefore, advanced computational methods and pipelines have to be developed to cope with such need for efficient analyses. In this paper, we proposed Parallel-META, a GPU- and multi-core-CPU-based open-source pipeline for metagenomic data analysis, which enabled the efficient and parallel analysis of multiple metagenomic datasets. In Parallel-META, the similarity-based database search was parallelized based on GPU computing and multi-core CPU computing optimization. Experiments have shown that Parallel-META has at least 15 times speed-up compared to traditional metagenomic data analysis method, with the same accuracy of the results (http://www.bioenergychina.org:8800/).","PeriodicalId":355056,"journal":{"name":"2011 IEEE International Conference on Systems Biology (ISB)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Systems Biology (ISB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISB.2011.6033151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Metagenomics method directly sequences and analyzes genome information from microbial communities. There are usually more than hundreds of genomes from different microbial species in the same community, and the main computational tasks for metagenomics data analysis include taxonomical and functional component of these genomes in the microbial community. Metagenomic data analysis is both data- and computation- intensive, which requires extensive computational power. Most of the current metagenomic data analysis softwares were designed to be used on a single computer, which could not match with the fast increasing number of large metagenomic projects' computational requirements. Therefore, advanced computational methods and pipelines have to be developed to cope with such need for efficient analyses. In this paper, we proposed Parallel-META, a GPU- and multi-core-CPU-based open-source pipeline for metagenomic data analysis, which enabled the efficient and parallel analysis of multiple metagenomic datasets. In Parallel-META, the similarity-based database search was parallelized based on GPU computing and multi-core CPU computing optimization. Experiments have shown that Parallel-META has at least 15 times speed-up compared to traditional metagenomic data analysis method, with the same accuracy of the results (http://www.bioenergychina.org:8800/).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Parallel-META:用于宏基因组数据分析的高性能计算管道
宏基因组学方法直接对微生物群落的基因组信息进行测序和分析。在同一群落中,通常有数百个不同微生物物种的基因组,宏基因组学数据分析的主要计算任务包括微生物群落中这些基因组的分类和功能成分。宏基因组数据分析是数据密集型和计算密集型的,需要大量的计算能力。目前大多数宏基因组数据分析软件都设计为在单台计算机上使用,无法满足快速增长的大型宏基因组项目的计算需求。因此,必须开发先进的计算方法和管道来应对这种高效分析的需求。本文提出了一种基于GPU和多核cpu的开源宏基因组数据分析管道parallel - meta,实现了对多个宏基因组数据集的高效并行分析。在Parallel-META中,基于相似度的数据库搜索在GPU计算和多核CPU计算优化的基础上并行化。实验表明,Parallel-META与传统宏基因组数据分析方法相比,速度至少提高了15倍,结果精度相同(http://www.bioenergychina.org:8800/)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detecting coherent local patterns from time series gene expression data by a temporal biclustering method Bifurcation of an epidemic model with sub-optimal immunity and saturated recovery rate Parallel-META: A high-performance computational pipeline for metagenomic data analysis The role of GSH depletion in Resveratrol induced HeLa cell apoptosis Genomic signatures for metagenomic data analysis: Exploiting the reverse complementarity of tetranucleotides
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1