SixPack v2: enhancing SixPack to avoid last generation misbehavior detectors in VANETs

Gabriele Gambigliani Zoccoli, Francesco Pollicino, Dario Stabili, Mirco Marchetti
{"title":"SixPack v2: enhancing SixPack to avoid last generation misbehavior detectors in VANETs","authors":"Gabriele Gambigliani Zoccoli, Francesco Pollicino, Dario Stabili, Mirco Marchetti","doi":"10.1109/NCA57778.2022.10013565","DOIUrl":null,"url":null,"abstract":"This paper proposes SixPack v2, an enhanced version of the SixPack attack that allows to evade even state-of-the-art misbehavior detection systems. As the original SixPack, SixPack v2 is a dynamic attack targeting other C-ITS entities by simulating the sudden activation of the braking system with consequent activation of the Anti-lock Braking System. SixPack v2 achieves better evasion by improving the main phases of the attack (FakeBrake, Recovery, and Rejoin) through a novel path-reconstruction algorithm that generates a more realistic representation of the real vehicle trajectory. We experimentally evaluate the evasion capabilities of SixPack v2 using the F2MD framework on the LuSTMini city scenario, and we compared the detection performance of the F2MD framework on both versions of SixPack. Results show that SixPack v2 evades detection with a significantly higher likelihood with respect to the initial version of the attack, even against the latest version of F2MD.","PeriodicalId":251728,"journal":{"name":"2022 IEEE 21st International Symposium on Network Computing and Applications (NCA)","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 21st International Symposium on Network Computing and Applications (NCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCA57778.2022.10013565","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes SixPack v2, an enhanced version of the SixPack attack that allows to evade even state-of-the-art misbehavior detection systems. As the original SixPack, SixPack v2 is a dynamic attack targeting other C-ITS entities by simulating the sudden activation of the braking system with consequent activation of the Anti-lock Braking System. SixPack v2 achieves better evasion by improving the main phases of the attack (FakeBrake, Recovery, and Rejoin) through a novel path-reconstruction algorithm that generates a more realistic representation of the real vehicle trajectory. We experimentally evaluate the evasion capabilities of SixPack v2 using the F2MD framework on the LuSTMini city scenario, and we compared the detection performance of the F2MD framework on both versions of SixPack. Results show that SixPack v2 evades detection with a significantly higher likelihood with respect to the initial version of the attack, even against the latest version of F2MD.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SixPack v2:增强SixPack以避免VANETs中的上一代不当行为检测器
本文提出了SixPack v2,这是SixPack攻击的增强版本,可以逃避最先进的错误行为检测系统。与最初的SixPack一样,SixPack v2是一种针对其他C-ITS实体的动态攻击,通过模拟制动系统的突然激活和随后的防抱死制动系统的激活。SixPack v2通过一种新颖的路径重建算法改进了攻击的主要阶段(FakeBrake、Recovery和Rejoin),从而实现了更好的逃避,该算法生成了更逼真的真实车辆轨迹。我们在LuSTMini城市场景中使用F2MD框架实验评估了SixPack v2的逃避能力,并比较了F2MD框架在两个版本SixPack上的检测性能。结果表明,相对于初始版本的攻击,SixPack v2逃避检测的可能性要高得多,即使是针对最新版本的F2MD。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SixPack v2: enhancing SixPack to avoid last generation misbehavior detectors in VANETs LoCaaS: Location-Certification-as-a-Service Detecting Causality in the Presence of Byzantine Processes: There is No Holy Grail Formal models for the verification, performance evaluation, and comparison of IoT communication protocols Swarming with (Visual) Secret (Shared) Mission
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1