Clustering tendency assessment for datasets having inter-cluster density variations

Dheeraj Kumar, J. Bezdek
{"title":"Clustering tendency assessment for datasets having inter-cluster density variations","authors":"Dheeraj Kumar, J. Bezdek","doi":"10.1109/SPCOM50965.2020.9179608","DOIUrl":null,"url":null,"abstract":"Clustering tendency assessment, i.e., determining if a dataset has any inherent clusters, and if so, how many clusters, k to seek is a crucial pre-clustering task. The visual assessment of tendency (VAT) and improved visual assessment of tendency (iVAT) algorithms provide a visual way to assess cluster tendency of a dataset by reordering the pairwise dissimilarity matrix so that potential clusters are displayed as dark blocks along the diagonal in the image of the reordered dissimilarity matrix. VAT and iVAT, being distance-based schemes, fail to perform well for datasets consisting of clusters characterized by different density levels. In this paper, we introduce two new members of the VAT family of algorithms: Locally Scaled VAT (LSVAT) and Locally Scaled iVAT (LS-iVAT), which produces better iVAT images for data having inter-cluster density variations. Numerical experiments comparing the proposed novel approach with baseline VAT/iVAT as well as spectral clustering and density-based clustering algorithms establish that LS-VAT and LS-iVAT are superior to the comparable algorithms in terms of clustering quality.","PeriodicalId":208527,"journal":{"name":"2020 International Conference on Signal Processing and Communications (SPCOM)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Signal Processing and Communications (SPCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPCOM50965.2020.9179608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Clustering tendency assessment, i.e., determining if a dataset has any inherent clusters, and if so, how many clusters, k to seek is a crucial pre-clustering task. The visual assessment of tendency (VAT) and improved visual assessment of tendency (iVAT) algorithms provide a visual way to assess cluster tendency of a dataset by reordering the pairwise dissimilarity matrix so that potential clusters are displayed as dark blocks along the diagonal in the image of the reordered dissimilarity matrix. VAT and iVAT, being distance-based schemes, fail to perform well for datasets consisting of clusters characterized by different density levels. In this paper, we introduce two new members of the VAT family of algorithms: Locally Scaled VAT (LSVAT) and Locally Scaled iVAT (LS-iVAT), which produces better iVAT images for data having inter-cluster density variations. Numerical experiments comparing the proposed novel approach with baseline VAT/iVAT as well as spectral clustering and density-based clustering algorithms establish that LS-VAT and LS-iVAT are superior to the comparable algorithms in terms of clustering quality.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有簇间密度变化的数据集的聚类倾向评估
聚类倾向评估,即确定数据集是否有任何固有的聚类,如果有,需要寻找多少个聚类,k是一个至关重要的聚类前任务。视觉趋势评估(VAT)和改进的视觉趋势评估(iVAT)算法提供了一种可视化的方法来评估数据集的聚类趋势,通过对两两不相似矩阵进行重新排序,使潜在的聚类在重新排序的不相似矩阵的图像中沿对角线显示为暗块。VAT和iVAT是基于距离的方案,对于由不同密度水平的聚类组成的数据集表现不佳。在本文中,我们介绍了VAT算法家族的两个新成员:局部缩放VAT (LSVAT)和局部缩放iVAT (LS-iVAT),它们可以为具有簇间密度变化的数据产生更好的iVAT图像。数值实验将该方法与基线VAT/iVAT以及光谱聚类和基于密度的聚类算法进行了比较,结果表明,LS-VAT和LS-iVAT在聚类质量方面优于同类算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Wavelet based Fine-to-Coarse Retinal Blood Vessel Extraction using U-net Model Classification of Social Signals Using Deep LSTM-based Recurrent Neural Networks Classifying Cultural Music using Melodic Features Clustering tendency assessment for datasets having inter-cluster density variations Component-specific temporal decomposition: application to enhanced speech coding and co-articulation analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1