Tournament Particle Swarm Optimization

W. H. Duminy, A. Engelbrecht
{"title":"Tournament Particle Swarm Optimization","authors":"W. H. Duminy, A. Engelbrecht","doi":"10.1109/CIG.2007.368091","DOIUrl":null,"url":null,"abstract":"This paper introduces tournament particle swarm optimization (PSO) as a method to optimize weights of game tree evaluation functions in a competitive environment using particle swarm optimization. This method makes use of tournaments to ensure a fair evaluation of the performance of particles in the swarm, relative to that of other particles. The empirical work presented compares the performance of different tournament methods that can be applied to the tournament PSO, with application to Checkers.","PeriodicalId":365269,"journal":{"name":"2007 IEEE Symposium on Computational Intelligence and Games","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Symposium on Computational Intelligence and Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIG.2007.368091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper introduces tournament particle swarm optimization (PSO) as a method to optimize weights of game tree evaluation functions in a competitive environment using particle swarm optimization. This method makes use of tournaments to ensure a fair evaluation of the performance of particles in the swarm, relative to that of other particles. The empirical work presented compares the performance of different tournament methods that can be applied to the tournament PSO, with application to Checkers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
锦标赛粒子群优化
本文介绍了竞赛粒子群算法(PSO)作为一种利用粒子群算法优化竞争环境下博弈树评价函数权重的方法。这种方法利用比赛来确保群体中粒子相对于其他粒子的性能得到公平的评估。本文的实证工作比较了不同比赛方法的性能,这些方法可以应用于比赛PSO,并应用于跳棋。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hybrid Evolutionary Learning Approaches for The Virus Game Vidya: A God Game Based on Intelligent Agents Whose Actions are Devised Through Evolutionary Computation Evolving Pac-Man Players: Can We Learn from Raw Input? Tournament Particle Swarm Optimization EvoTanks: Co-Evolutionary Development of Game-Playing Agents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1