Rice yield estimation at pixel scale using relative vegetation indices from unmanned aerial systems

Feilong Wang, Fumin Wang, Yao Zhang, Jinghui Hu, Jingfeng Huang, Lili Xie, Jingkai Xie
{"title":"Rice yield estimation at pixel scale using relative vegetation indices from unmanned aerial systems","authors":"Feilong Wang, Fumin Wang, Yao Zhang, Jinghui Hu, Jingfeng Huang, Lili Xie, Jingkai Xie","doi":"10.1109/Agro-Geoinformatics.2019.8820226","DOIUrl":null,"url":null,"abstract":"Timely and accurate prediction of rice yield information is closely related to the people’s livelihood, which has been attached great importance by all levels of government. Satellite remote sensing provides the possibility for large-scale crop yield estimation, but they are usually limited by spatial and spectral resolution. Unmanned Aerial Vehicles (UAV) remote sensing with hyperspectral sensors can obtain high spatial-temporal resolution and hyperspectral images on demand. Generally, time-series Vegetation Indices (VIs) are used for estimating grain yield. But multi-day vegetation indices may be affected by different background and illumination condition, so the differences between vegetation indices may include the effects induced from external condition, which will pose a negative effect on the accuracy of crop yield estimation. Therefore, in this study, the relative vegetation index and relative yield were proposed and used to estimate rice yield at pixel scale. And the optimal growth stages for crop yield estimation would also be determined. Hyperspectral images of critical rice growth stages at tillering stage, jointing stage, booting stage, heading stage, filling stage, ripening stage were obtained from July 28 to November 24 in 2017. Firstly, all possible two-band combinations of discrete channels from 500nm to 900nm was used to create Relative Normalized Difference Vegetation Index (RNDVI). Then the best RNDVI at different growth stages were determined for rice yield estimation. Finally, different combinations of growth stages were tested to obtain the optimal combinations for yield estimation. These models were validated at pixel scale using the measured yields. The result shows that four-growth-stage model with RNDVI[635, 784] at tillering stage, RNDVI[744,807] at jointing stage, RNDVI[712,784] at booting stage, RNDVI[736,816] at heading stage with the multiple linear regression function gain a higher R2 (0.74) and lower RMSE (248.97kg/ha). The mean absolute percentage error of estimated rice yield of 4.31%. Results shows that the yield estimations at pixel scale with relative vegetation indices were acceptable. In the study, a yield estimation method with relative vegetation indices is proposed and the optimal growth stage combinations for rice yield estimation were determined. This study explores the possibility of yield estimation at pixel scale using hyperspectral images from UAV platform, which will further improve the method system for remote sensing of yield estimation.","PeriodicalId":143731,"journal":{"name":"2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Agro-Geoinformatics.2019.8820226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Timely and accurate prediction of rice yield information is closely related to the people’s livelihood, which has been attached great importance by all levels of government. Satellite remote sensing provides the possibility for large-scale crop yield estimation, but they are usually limited by spatial and spectral resolution. Unmanned Aerial Vehicles (UAV) remote sensing with hyperspectral sensors can obtain high spatial-temporal resolution and hyperspectral images on demand. Generally, time-series Vegetation Indices (VIs) are used for estimating grain yield. But multi-day vegetation indices may be affected by different background and illumination condition, so the differences between vegetation indices may include the effects induced from external condition, which will pose a negative effect on the accuracy of crop yield estimation. Therefore, in this study, the relative vegetation index and relative yield were proposed and used to estimate rice yield at pixel scale. And the optimal growth stages for crop yield estimation would also be determined. Hyperspectral images of critical rice growth stages at tillering stage, jointing stage, booting stage, heading stage, filling stage, ripening stage were obtained from July 28 to November 24 in 2017. Firstly, all possible two-band combinations of discrete channels from 500nm to 900nm was used to create Relative Normalized Difference Vegetation Index (RNDVI). Then the best RNDVI at different growth stages were determined for rice yield estimation. Finally, different combinations of growth stages were tested to obtain the optimal combinations for yield estimation. These models were validated at pixel scale using the measured yields. The result shows that four-growth-stage model with RNDVI[635, 784] at tillering stage, RNDVI[744,807] at jointing stage, RNDVI[712,784] at booting stage, RNDVI[736,816] at heading stage with the multiple linear regression function gain a higher R2 (0.74) and lower RMSE (248.97kg/ha). The mean absolute percentage error of estimated rice yield of 4.31%. Results shows that the yield estimations at pixel scale with relative vegetation indices were acceptable. In the study, a yield estimation method with relative vegetation indices is proposed and the optimal growth stage combinations for rice yield estimation were determined. This study explores the possibility of yield estimation at pixel scale using hyperspectral images from UAV platform, which will further improve the method system for remote sensing of yield estimation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用无人机系统的相对植被指数在像素尺度上估算水稻产量
及时准确地预报水稻产量信息,关系到民生,一直受到各级政府的高度重视。卫星遥感为大规模作物产量估算提供了可能,但通常受到空间和光谱分辨率的限制。采用高光谱传感器的无人机遥感可以按需获取高时空分辨率和高光谱图像。粮食产量的估算一般采用时序植被指数(VIs)。但多日植被指数可能受到不同背景和光照条件的影响,因此植被指数之间的差异可能包括外界条件的影响,这将对作物产量估算的准确性造成负面影响。因此,本研究提出了相对植被指数和相对产量在像元尺度上估算水稻产量的方法。从而确定作物产量估算的最佳生育阶段。对2017年7月28日至11月24日水稻分蘖期、拔节期、孕穗期、抽穗期、灌浆期、成熟期等关键生育期的高光谱影像进行了研究。首先,利用500nm ~ 900nm范围内所有可能的两波段离散通道组合,生成相对归一化植被指数(RNDVI);在此基础上,确定了不同生育期水稻产量估算的最佳RNDVI。最后,对不同生育阶段的组合进行了试验,以获得最优的产量估算组合。使用测量的产量在像素尺度上验证了这些模型。结果表明:分蘖期RNDVI[635, 784]、拔节期RNDVI[744,807]、孕穗期RNDVI[712,784]、抽穗期RNDVI[736,816]采用多元线性回归函数建立的四生育期模型R2较高(0.74),RMSE较低(248.97kg/ha)。估计水稻产量的平均绝对百分比误差为4.31%。结果表明,利用相对植被指数在像元尺度上估算的产量是可以接受的。本研究提出了一种利用相关植被指数估算水稻产量的方法,并确定了水稻产量估算的最佳生育期组合。本研究探索了利用无人机平台高光谱影像进行像元尺度产量估算的可能性,将进一步完善遥感产量估算的方法体系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Archiving System of Rural Land Contractual Management Right Data using Multithreading and Distributed Storage Technology Winter Wheat Drought Monitoring with Multi-temporal MODIS data and AquaCrop Model—A Case Study in Henan Province Rice yield estimation at pixel scale using relative vegetation indices from unmanned aerial systems Research on Cotton Information Extraction Based on Sentinel-2 Time Series Analysis Impacts of El Nino Southern Oscillation (ENSO) and North Atlantic Oscillation (NAO) on the Olive Yield in the Mediterranean Region, Turkey
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1