Numerical analysis of the motion and load responses of a 400,000 DWT ore carrier in waves

C. A. Adenya, H. Ren, Chuan-Dong Qing
{"title":"Numerical analysis of the motion and load responses of a 400,000 DWT ore carrier in waves","authors":"C. A. Adenya, H. Ren, Chuan-Dong Qing","doi":"10.23919/OCEANS.2015.7404529","DOIUrl":null,"url":null,"abstract":"The need to benefit from economy of scale has driven the design of larger and larger ships with increasing tonnage. The hull structures of large ships are more flexible and the natural frequencies of the hull girder can even fall within the range of wave encounter frequencies resulting in the resonance phenomenon termed springing. A numerical linear hydroelastic investigation of the wave induced motion and load responses of a 400,000 dead weight tonnage (DWT) ore carrier is carried out in this work using an in-house program: Linear Elastic Compass Wave Loads Calculation System (WALCS-LE). The full load condition at different ship speeds, wave lengths and incident wave headings in regular waves is investigated. Long term predictions are also made. It is imperative to account for springing loads and the probable extreme motions and loads at the design stage of large ships to ensure their endurance and safety at sea.","PeriodicalId":403976,"journal":{"name":"OCEANS 2015 - MTS/IEEE Washington","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"OCEANS 2015 - MTS/IEEE Washington","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/OCEANS.2015.7404529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The need to benefit from economy of scale has driven the design of larger and larger ships with increasing tonnage. The hull structures of large ships are more flexible and the natural frequencies of the hull girder can even fall within the range of wave encounter frequencies resulting in the resonance phenomenon termed springing. A numerical linear hydroelastic investigation of the wave induced motion and load responses of a 400,000 dead weight tonnage (DWT) ore carrier is carried out in this work using an in-house program: Linear Elastic Compass Wave Loads Calculation System (WALCS-LE). The full load condition at different ship speeds, wave lengths and incident wave headings in regular waves is investigated. Long term predictions are also made. It is imperative to account for springing loads and the probable extreme motions and loads at the design stage of large ships to ensure their endurance and safety at sea.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
40万载重吨矿砂船波浪运动与荷载响应数值分析
为了从规模经济中获益,随着吨位的增加,船舶的设计也越来越大。大型船舶的船体结构更加灵活,船体梁的固有频率甚至可以落在遇波频率的范围内,从而产生称为弹簧的共振现象。在这项工作中,使用了一个内部程序:线性弹性罗经波载荷计算系统(WALCS-LE),对40万载重吨(DWT)矿石船的波浪诱导运动和载荷响应进行了数值线性水弹性研究。研究了不同航速、不同波长、不同入射波头下的船舶满载情况。长期预测也做了。为了保证大型船舶的航行耐久性和安全,在设计阶段就必须考虑到弹性载荷和可能出现的极限运动载荷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Integration of a RSI microstructure sensing package into a Seaglider Capacity analysis for broadband communications on sea A methodology to improve the assessment of vulnerability on the maritime supply chain of energy Detection of false AIS messages for the improvement of maritime situational awareness Automated point cloud correspondence detection for underwater mapping using AUVs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1