Automated point cloud correspondence detection for underwater mapping using AUVs

M. Hammond, Ashley Clark, A. Mahajan, Sumant Sharma, S. Rock
{"title":"Automated point cloud correspondence detection for underwater mapping using AUVs","authors":"M. Hammond, Ashley Clark, A. Mahajan, Sumant Sharma, S. Rock","doi":"10.23919/OCEANS.2015.7404431","DOIUrl":null,"url":null,"abstract":"An algorithm for automating correspondence detection between point clouds composed of multibeam sonar data is presented. This allows accurate initialization for point cloud alignment techniques even in cases where accurate inertial navigation is not available, such as iceberg profiling or vehicles with low-grade inertial navigation systems. Techniques from computer vision literature are used to extract, label, and match keypoints between “pseudo-images” generated from these point clouds. Image matches are refined using RANSAC and information about the vehicle trajectory. The resulting correspondences can be used to initialize an iterative closest point (ICP) registration algorithm to estimate accumulated navigation error and aid in the creation of accurate, self-consistent maps. The results presented use multibeam sonar data obtained from multiple overlapping passes of an underwater canyon in Monterey Bay, California. Using strict matching criteria, the method detects 23 between-swath correspondence events in a set of 155 pseudo-images with zero false positives. Using less conservative matching criteria doubles the number of matches but introduces several false positive matches as well. Heuristics based on known vehicle trajectory information are used to eliminate these.","PeriodicalId":403976,"journal":{"name":"OCEANS 2015 - MTS/IEEE Washington","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"OCEANS 2015 - MTS/IEEE Washington","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/OCEANS.2015.7404431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

An algorithm for automating correspondence detection between point clouds composed of multibeam sonar data is presented. This allows accurate initialization for point cloud alignment techniques even in cases where accurate inertial navigation is not available, such as iceberg profiling or vehicles with low-grade inertial navigation systems. Techniques from computer vision literature are used to extract, label, and match keypoints between “pseudo-images” generated from these point clouds. Image matches are refined using RANSAC and information about the vehicle trajectory. The resulting correspondences can be used to initialize an iterative closest point (ICP) registration algorithm to estimate accumulated navigation error and aid in the creation of accurate, self-consistent maps. The results presented use multibeam sonar data obtained from multiple overlapping passes of an underwater canyon in Monterey Bay, California. Using strict matching criteria, the method detects 23 between-swath correspondence events in a set of 155 pseudo-images with zero false positives. Using less conservative matching criteria doubles the number of matches but introduces several false positive matches as well. Heuristics based on known vehicle trajectory information are used to eliminate these.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自动点云对应检测水下测绘使用auv
提出了一种由多波束声纳数据组成的点云之间的自动对应检测算法。这允许精确初始化点云对齐技术,即使在没有精确惯性导航的情况下,如冰山剖面或低等级惯性导航系统的车辆。计算机视觉文献中的技术用于从这些点云生成的“伪图像”之间提取、标记和匹配关键点。使用RANSAC和车辆轨迹信息对图像匹配进行细化。由此产生的对应关系可用于初始化迭代最近点(ICP)注册算法,以估计累积的导航误差,并帮助创建精确的、自一致的地图。研究结果采用多波束声纳数据,这些数据来自加利福尼亚州蒙特利湾水下峡谷的多个重叠通道。该方法使用严格的匹配标准,在155张伪图像中检测到23个条间对应事件,并且没有误报。使用不太保守的匹配标准会使匹配数量增加一倍,但也会引入一些假阳性匹配。基于已知车辆轨迹信息的启发式算法用于消除这些问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Integration of a RSI microstructure sensing package into a Seaglider Capacity analysis for broadband communications on sea A methodology to improve the assessment of vulnerability on the maritime supply chain of energy Detection of false AIS messages for the improvement of maritime situational awareness Automated point cloud correspondence detection for underwater mapping using AUVs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1