Combination of multiple samples utilizing identification model in biometric systems

Xi Cheng, S. Tulyakov, V. Govindaraju
{"title":"Combination of multiple samples utilizing identification model in biometric systems","authors":"Xi Cheng, S. Tulyakov, V. Govindaraju","doi":"10.1109/IJCB.2011.6117512","DOIUrl":null,"url":null,"abstract":"In some cases, the test person might be asked to provide another authentication attempt besides the first one so that combination of the two input templates might give the system more confidence if the person is genuine or impostor. Instead of simply combining the matching scores which are associated with a single person compared to the two input templates, we investigate the use of matching scores corresponding to all enrolled persons. The dependencies between scores generated by the same input templates are accounted for the proposed combination algorithm. Such combination methods can be extended to large number of classes and input templates. Since matching scores are used, the proposed methods can also be applied on arbitrary biometric modalities. The experiments are conducted on NIST BSSR1 face and FVC2002 fingerprint datasets by using both likelihood ratio and multilayer perceptron combination methods.","PeriodicalId":103913,"journal":{"name":"2011 International Joint Conference on Biometrics (IJCB)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCB.2011.6117512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In some cases, the test person might be asked to provide another authentication attempt besides the first one so that combination of the two input templates might give the system more confidence if the person is genuine or impostor. Instead of simply combining the matching scores which are associated with a single person compared to the two input templates, we investigate the use of matching scores corresponding to all enrolled persons. The dependencies between scores generated by the same input templates are accounted for the proposed combination algorithm. Such combination methods can be extended to large number of classes and input templates. Since matching scores are used, the proposed methods can also be applied on arbitrary biometric modalities. The experiments are conducted on NIST BSSR1 face and FVC2002 fingerprint datasets by using both likelihood ratio and multilayer perceptron combination methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生物识别系统中利用识别模型的多样本组合
在某些情况下,测试人员可能会被要求提供除第一次身份验证之外的另一次身份验证尝试,以便两个输入模板的组合可能会给系统更大的信心,无论该人是真实的还是冒名顶替者。我们不是简单地将与单个人相关的匹配分数与两个输入模板相结合,而是研究了与所有登记人员对应的匹配分数的使用。提出的组合算法考虑了由相同输入模板生成的分数之间的依赖关系。这种组合方法可以扩展到大量的类和输入模板。由于使用匹配分数,所提出的方法也可以应用于任意生物识别模式。采用似然比和多层感知器组合方法在NIST BSSR1人脸和FVC2002指纹数据集上进行了实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Low-resolution face recognition via Simultaneous Discriminant Analysis Fundamental statistics of relatively permanent pigmented or vascular skin marks for criminal and victim identification Biometric recognition of newborns: Identification using palmprints Combination of multiple samples utilizing identification model in biometric systems Face and eye detection on hard datasets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1