Face and eye detection on hard datasets

Jonathan Parris, Michael J. Wilber, B. Heflin, H. Rara, Ahmed El-Barkouky, A. Farag, J. Movellan, anonymous, M. C. Santana, J. Lorenzo-Navarro, Mohammad Nayeem Teli, S. Marcel, Cosmin Atanasoaei, T. Boult
{"title":"Face and eye detection on hard datasets","authors":"Jonathan Parris, Michael J. Wilber, B. Heflin, H. Rara, Ahmed El-Barkouky, A. Farag, J. Movellan, anonymous, M. C. Santana, J. Lorenzo-Navarro, Mohammad Nayeem Teli, S. Marcel, Cosmin Atanasoaei, T. Boult","doi":"10.1109/IJCB.2011.6117593","DOIUrl":null,"url":null,"abstract":"Face and eye detection algorithms are deployed in a wide variety of applications. Unfortunately, there has been no quantitative comparison of how these detectors perform under difficult circumstances. We created a dataset of low light and long distance images which possess some of the problems encountered by face and eye detectors solving real world problems. The dataset we created is composed of reimaged images (photohead) and semi-synthetic heads imaged under varying conditions of low light, atmospheric blur, and distances of 3m, 50m, 80m, and 200m. This paper analyzes the detection and localization performance of the participating face and eye algorithms compared with the Viola Jones detector and four leading commercial face detectors. Performance is characterized under the different conditions and parameterized by per-image brightness and contrast. In localization accuracy for eyes, the groups/companies focusing on long-range face detection outperform leading commercial applications.","PeriodicalId":103913,"journal":{"name":"2011 International Joint Conference on Biometrics (IJCB)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCB.2011.6117593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

Face and eye detection algorithms are deployed in a wide variety of applications. Unfortunately, there has been no quantitative comparison of how these detectors perform under difficult circumstances. We created a dataset of low light and long distance images which possess some of the problems encountered by face and eye detectors solving real world problems. The dataset we created is composed of reimaged images (photohead) and semi-synthetic heads imaged under varying conditions of low light, atmospheric blur, and distances of 3m, 50m, 80m, and 200m. This paper analyzes the detection and localization performance of the participating face and eye algorithms compared with the Viola Jones detector and four leading commercial face detectors. Performance is characterized under the different conditions and parameterized by per-image brightness and contrast. In localization accuracy for eyes, the groups/companies focusing on long-range face detection outperform leading commercial applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
硬数据集上的人脸和眼睛检测
人脸和眼睛检测算法被部署在各种各样的应用中。不幸的是,目前还没有对这些探测器在困难环境下的表现进行定量比较。我们创建了一个低光和远距离图像的数据集,其中包含了人脸和眼睛探测器在解决现实世界问题时遇到的一些问题。我们创建的数据集由重新成像的图像(照片头)和半合成头组成,这些图像在不同的条件下进行了成像,包括低光、大气模糊和距离分别为3米、50米、80米和200米。本文通过与Viola Jones检测器和四种领先的商用人脸检测器的比较,分析了参与人脸和眼睛算法的检测和定位性能。性能在不同条件下进行表征,并通过每张图像的亮度和对比度进行参数化。在眼睛的定位精度方面,专注于远程人脸检测的团体/公司表现优于领先的商业应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Low-resolution face recognition via Simultaneous Discriminant Analysis Fundamental statistics of relatively permanent pigmented or vascular skin marks for criminal and victim identification Biometric recognition of newborns: Identification using palmprints Combination of multiple samples utilizing identification model in biometric systems Face and eye detection on hard datasets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1