Scalable yet Rigorous Floating-Point Error Analysis

Arnab Das, Ian Briggs, G. Gopalakrishnan, S. Krishnamoorthy, P. Panchekha
{"title":"Scalable yet Rigorous Floating-Point Error Analysis","authors":"Arnab Das, Ian Briggs, G. Gopalakrishnan, S. Krishnamoorthy, P. Panchekha","doi":"10.1109/SC41405.2020.00055","DOIUrl":null,"url":null,"abstract":"Automated techniques for rigorous floating-point round-off error analysis are a prerequisite to placing important activities in HPC such as precision allocation, verification, and code optimization on a formal footing. Yet existing techniques cannot provide tight bounds for expressions beyond a few dozen operators–barely enough for HPC. In this work, we offer an approach embedded in a new tool called SATIHE that scales error analysis by four orders of magnitude compared to today’s best-of-class tools. We explain how three key ideas underlying SATIHE helps it attain such scale: path strength reduction, bound optimization, and abstraction. SATIHE provides tight bounds and rigorous guarantees on significantly larger expressions with well over a hundred thousand operators, covering important examples including FFT, matrix multiplication, and PDE stencils.","PeriodicalId":424429,"journal":{"name":"SC20: International Conference for High Performance Computing, Networking, Storage and Analysis","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SC20: International Conference for High Performance Computing, Networking, Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC41405.2020.00055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

Automated techniques for rigorous floating-point round-off error analysis are a prerequisite to placing important activities in HPC such as precision allocation, verification, and code optimization on a formal footing. Yet existing techniques cannot provide tight bounds for expressions beyond a few dozen operators–barely enough for HPC. In this work, we offer an approach embedded in a new tool called SATIHE that scales error analysis by four orders of magnitude compared to today’s best-of-class tools. We explain how three key ideas underlying SATIHE helps it attain such scale: path strength reduction, bound optimization, and abstraction. SATIHE provides tight bounds and rigorous guarantees on significantly larger expressions with well over a hundred thousand operators, covering important examples including FFT, matrix multiplication, and PDE stencils.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可扩展但严格的浮点误差分析
严格的浮点舍入误差分析的自动化技术是将精度分配、验证和代码优化等重要活动置于正式基础之上的先决条件。然而,现有的技术无法为超过几十个运算符的表达式提供严格的边界——这对HPC来说几乎不够。在这项工作中,我们提供了一种嵌入到一个名为SATIHE的新工具中的方法,与当今一流的工具相比,该工具将误差分析的规模提高了四个数量级。我们解释了SATIHE背后的三个关键思想是如何帮助它达到这样的规模的:路径强度缩减、边界优化和抽象。SATIHE为具有超过十万个运算符的大型表达式提供了严格的边界和严格的保证,涵盖了FFT、矩阵乘法和PDE模板等重要示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CAB-MPI: Exploring Interprocess Work-Stealing towards Balanced MPI Communication Toward Realization of Numerical Towing-Tank Tests by Wall-Resolved Large Eddy Simulation based on 32 Billion Grid Finite-Element Computation Scalable yet Rigorous Floating-Point Error Analysis Scalable Knowledge Graph Analytics at 136 Petaflop/s BORA: A Bag Optimizer for Robotic Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1