BORA: A Bag Optimizer for Robotic Analysis

Jian Zhang, T. Xie, Yuzhuo Jing, Yanjie Song, Guanzhou Hu, Si Chen, Shu Yin
{"title":"BORA: A Bag Optimizer for Robotic Analysis","authors":"Jian Zhang, T. Xie, Yuzhuo Jing, Yanjie Song, Guanzhou Hu, Si Chen, Shu Yin","doi":"10.1109/SC41405.2020.00016","DOIUrl":null,"url":null,"abstract":"We present BORA (Bag Optimizer for Robotic Analysis), a file system middleware that optimizes the acquisition of bags, which are specially formatted files used to store timestamped ROS (robot operating system) messages. BORA sits between ROS and an existing file system to conduct semantic-aware data pre-processing. In particular, it categorizes ROS bag data into multiple groups with each having a distinct label. BORA predigests data index constructions and reduces file open time via a hash-based label management scheme. It is also capable of providing ROS analytic applications with only data needed without a sequence of data searching and locating operations. We implement a BORA prototype, which is then integrated into three computing platforms: a single-node server, a four-node PVFS storage cluster, and a Tianhe-1A Supercomputer storage subsystem. Next, we evaluate the BORA prototype on the three platforms using four real-world ROS applications. Our experimental results show that compared to a traditional bag management scheme BORA improves data acquisition performance by up to 11x. In addition, it offers up to 10x data acquisition performance improvement and 3,100x bags open improvement under a swarm robotics data analysis scenario where data is retrieved across multiple bags simultaneously.","PeriodicalId":424429,"journal":{"name":"SC20: International Conference for High Performance Computing, Networking, Storage and Analysis","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SC20: International Conference for High Performance Computing, Networking, Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC41405.2020.00016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We present BORA (Bag Optimizer for Robotic Analysis), a file system middleware that optimizes the acquisition of bags, which are specially formatted files used to store timestamped ROS (robot operating system) messages. BORA sits between ROS and an existing file system to conduct semantic-aware data pre-processing. In particular, it categorizes ROS bag data into multiple groups with each having a distinct label. BORA predigests data index constructions and reduces file open time via a hash-based label management scheme. It is also capable of providing ROS analytic applications with only data needed without a sequence of data searching and locating operations. We implement a BORA prototype, which is then integrated into three computing platforms: a single-node server, a four-node PVFS storage cluster, and a Tianhe-1A Supercomputer storage subsystem. Next, we evaluate the BORA prototype on the three platforms using four real-world ROS applications. Our experimental results show that compared to a traditional bag management scheme BORA improves data acquisition performance by up to 11x. In addition, it offers up to 10x data acquisition performance improvement and 3,100x bags open improvement under a swarm robotics data analysis scenario where data is retrieved across multiple bags simultaneously.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BORA:用于机器人分析的袋子优化器
我们提出BORA(机器人分析包优化器),这是一个优化包获取的文件系统中间件,包是一种特殊格式的文件,用于存储时间戳ROS(机器人操作系统)消息。BORA位于ROS和现有文件系统之间,进行语义感知的数据预处理。特别是,它将ROS袋数据分为多组,每组都有一个不同的标签。BORA简化了数据索引构建,并通过基于哈希的标签管理方案减少了文件打开时间。它还能够为ROS分析应用程序提供所需的数据,而无需进行一系列数据搜索和定位操作。我们实现了一个BORA原型,然后将其集成到三个计算平台中:单节点服务器,四节点PVFS存储集群和天河1a超级计算机存储子系统。接下来,我们使用四个真实的ROS应用程序在三个平台上评估BORA原型。实验结果表明,与传统的包管理方案相比,BORA的数据采集性能提高了11倍。此外,在群体机器人数据分析场景下,它提供了高达10倍的数据采集性能改进和3100倍的袋子打开改进,其中数据可以同时从多个袋子中检索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CAB-MPI: Exploring Interprocess Work-Stealing towards Balanced MPI Communication Toward Realization of Numerical Towing-Tank Tests by Wall-Resolved Large Eddy Simulation based on 32 Billion Grid Finite-Element Computation Scalable yet Rigorous Floating-Point Error Analysis Scalable Knowledge Graph Analytics at 136 Petaflop/s BORA: A Bag Optimizer for Robotic Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1