Efficient DER Voltage Control Using Ensemble Deep Reinforcement Learning

James Obert, R. Trevizan, A. Chavez
{"title":"Efficient DER Voltage Control Using Ensemble Deep Reinforcement Learning","authors":"James Obert, R. Trevizan, A. Chavez","doi":"10.1109/AI4I54798.2022.00021","DOIUrl":null,"url":null,"abstract":"To meet the challenges oflow-carbon power generation, distributed energy resources (DERs) such as solar and wind power generators are now widely integrated into the power grid. Because of the autonomous nature of DERs, ensuring properly regulated output voltages of the individual sources to the grid distribution system poses a technical challenge to grid operators. Stochastic, model-free voltage regulations methods such as deep reinforcement learning (DRL) have proven effective in the regulation of DER output voltages; however, deriving an optimal voltage control policy using DRL over a large state space has a large computational time complexity. In this paper we illustrate a computationally efficient method for deriving an optimal voltage control policy using a parallelized DRL ensemble. Additionally, we illustrate the resiliency of the control ensemble when random noise is introduced by a cyber adversary.","PeriodicalId":345427,"journal":{"name":"2022 5th International Conference on Artificial Intelligence for Industries (AI4I)","volume":"130 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 5th International Conference on Artificial Intelligence for Industries (AI4I)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AI4I54798.2022.00021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To meet the challenges oflow-carbon power generation, distributed energy resources (DERs) such as solar and wind power generators are now widely integrated into the power grid. Because of the autonomous nature of DERs, ensuring properly regulated output voltages of the individual sources to the grid distribution system poses a technical challenge to grid operators. Stochastic, model-free voltage regulations methods such as deep reinforcement learning (DRL) have proven effective in the regulation of DER output voltages; however, deriving an optimal voltage control policy using DRL over a large state space has a large computational time complexity. In this paper we illustrate a computationally efficient method for deriving an optimal voltage control policy using a parallelized DRL ensemble. Additionally, we illustrate the resiliency of the control ensemble when random noise is introduced by a cyber adversary.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于集成深度强化学习的DER电压控制
为了应对低碳发电的挑战,分布式能源(DERs),如太阳能和风能发电机,现在被广泛地集成到电网中。由于分布式电源的自治特性,确保各个电源输出电压的适当调节对电网运营商提出了技术挑战。随机、无模型电压调节方法,如深度强化学习(DRL)已被证明在DER输出电压的调节中是有效的;然而,在一个大的状态空间中使用DRL来推导最优电压控制策略具有很大的计算时间复杂度。在本文中,我们举例说明了一种计算效率的方法来推导一个最优电压控制策略使用并行DRL集成。此外,我们还说明了当网络对手引入随机噪声时控制集成的弹性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A scalable recommendation system approach for a companies - seniors matching Efficient DER Voltage Control Using Ensemble Deep Reinforcement Learning Explainable Artificial Intelligence for a high dimensional condition monitoring application using the SHAP Method Evaluation of different deep learning approaches for EEG classification Autonomous Load Carrier Approaching Based on Deep Reinforcement Learning with Compressed Visual Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1