Explainable Artificial Intelligence for a high dimensional condition monitoring application using the SHAP Method

Raphael Wallsberger, Tim Dieter Eberhardt, Paul-Albert Bartlau, Maurice Lucas Dörnte, Tim Lukas Schröter, S. Matzka
{"title":"Explainable Artificial Intelligence for a high dimensional condition monitoring application using the SHAP Method","authors":"Raphael Wallsberger, Tim Dieter Eberhardt, Paul-Albert Bartlau, Maurice Lucas Dörnte, Tim Lukas Schröter, S. Matzka","doi":"10.1109/AI4I54798.2022.00024","DOIUrl":null,"url":null,"abstract":"In this paper, a new visualization-based method for understanding industrial machine learning models trained on high dimensional data is proposed. For a view that includes all dimensions, a dimensionality reduction towards a 2D projection, the UMAP method, is used. With the TreeSHAP algorithm the most important features for each machine condition are identified, visualized and evaluated. A closer look at different data points of the most important features provides more information about the behavior of the model. In addition, this knowledge is used to derive a class-optimized 2D visualization to increase trustworthiness of individual classification results for domain experts.","PeriodicalId":345427,"journal":{"name":"2022 5th International Conference on Artificial Intelligence for Industries (AI4I)","volume":"444-445 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 5th International Conference on Artificial Intelligence for Industries (AI4I)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AI4I54798.2022.00024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a new visualization-based method for understanding industrial machine learning models trained on high dimensional data is proposed. For a view that includes all dimensions, a dimensionality reduction towards a 2D projection, the UMAP method, is used. With the TreeSHAP algorithm the most important features for each machine condition are identified, visualized and evaluated. A closer look at different data points of the most important features provides more information about the behavior of the model. In addition, this knowledge is used to derive a class-optimized 2D visualization to increase trustworthiness of individual classification results for domain experts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用SHAP方法为高维状态监测应用程序提供可解释的人工智能
本文提出了一种新的基于可视化的方法来理解基于高维数据训练的工业机器学习模型。对于包含所有维度的视图,将使用UMAP方法对2D投影进行降维。使用TreeSHAP算法,可以识别、可视化和评估每个机器状态的最重要特征。仔细观察最重要特性的不同数据点,可以提供关于模型行为的更多信息。此外,这些知识用于派生类优化的2D可视化,以提高领域专家对单个分类结果的可信度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A scalable recommendation system approach for a companies - seniors matching Efficient DER Voltage Control Using Ensemble Deep Reinforcement Learning Explainable Artificial Intelligence for a high dimensional condition monitoring application using the SHAP Method Evaluation of different deep learning approaches for EEG classification Autonomous Load Carrier Approaching Based on Deep Reinforcement Learning with Compressed Visual Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1