Attitude Control for Quadcopters using Reinforcement Learning

Shun Nakasone, R. Galluzzi, Rogelio Bustamante-Bello
{"title":"Attitude Control for Quadcopters using Reinforcement Learning","authors":"Shun Nakasone, R. Galluzzi, Rogelio Bustamante-Bello","doi":"10.1109/ISEM55847.2022.9976737","DOIUrl":null,"url":null,"abstract":"In this paper, a novel control strategy based on Reinforcement Learning is presented to achieve better performance of attitude control for quadcopters. By using Proximal Policy Optimization, the agent is trained via a reward function and interaction with the environment. The control algorithm obtained from this training process is simulated and tested against proportional-integral-derivative control, being the most common attitude control algorithm used in drone races. The resulting control policies were comparable to the baseline counterpart and, in some cases, outperformed it in terms of noise rejection and robustness to external disturbances.","PeriodicalId":310452,"journal":{"name":"2022 International Symposium on Electromobility (ISEM)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Symposium on Electromobility (ISEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISEM55847.2022.9976737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a novel control strategy based on Reinforcement Learning is presented to achieve better performance of attitude control for quadcopters. By using Proximal Policy Optimization, the agent is trained via a reward function and interaction with the environment. The control algorithm obtained from this training process is simulated and tested against proportional-integral-derivative control, being the most common attitude control algorithm used in drone races. The resulting control policies were comparable to the baseline counterpart and, in some cases, outperformed it in terms of noise rejection and robustness to external disturbances.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用强化学习的四轴飞行器姿态控制
为了提高四轴飞行器的姿态控制性能,提出了一种基于强化学习的控制策略。通过使用最近邻策略优化,通过奖励函数和与环境的交互来训练智能体。在此训练过程中得到的控制算法与无人机比赛中最常用的姿态控制算法比例-积分-导数控制进行了仿真和测试。由此产生的控制策略与基线对应策略相当,并且在某些情况下,在噪声抑制和对外部干扰的鲁棒性方面优于基准策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adjusting MOVES’ Emission Factors in Light-duty Vehicles for a Specific Region Using Local Measurements Attitude Control for Quadcopters using Reinforcement Learning Bounded Gradient Attitude Control of a Quadcopter Supervisor-Based Switching Strategy for Semi-Active Suspension Control ISEM 2022 Cover Page
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1