Adaptive Batch Update in TCAM: How Collective Optimization Beats Individual Ones

Ying Wan, Haoyu Song, Yang Xu, Chuwen Zhang, Yi Wang, B. Liu
{"title":"Adaptive Batch Update in TCAM: How Collective Optimization Beats Individual Ones","authors":"Ying Wan, Haoyu Song, Yang Xu, Chuwen Zhang, Yi Wang, B. Liu","doi":"10.1109/INFOCOM42981.2021.9488758","DOIUrl":null,"url":null,"abstract":"Rule update in TCAM has long been identified as a key technical challenge due to the rule order constraint. Existing algorithms take each rule update as an independent task. However, emerging applications produce batch rule update requests. Processing the updates individually causes high aggregated cost which can strain the processor and/or incur excessive TCAM lookup interrupts. This paper presents the first true batch update algorithm, ABUT. Unlike the other alleged batch update algorithms, ABUT collectively evaluates and optimizes the TCAM placement for whole batches throughout. By applying the topology grouping and maintaining the group order invariance in TCAM, ABUT achieves substantial computing time reduction yet still yields the best-in-class placement cost. Our evaluations show that ABUT is ideal for low-latency and high-throughput batch TCAM updates in modern high-performance switches.","PeriodicalId":293079,"journal":{"name":"IEEE INFOCOM 2021 - IEEE Conference on Computer Communications","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE INFOCOM 2021 - IEEE Conference on Computer Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOCOM42981.2021.9488758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Rule update in TCAM has long been identified as a key technical challenge due to the rule order constraint. Existing algorithms take each rule update as an independent task. However, emerging applications produce batch rule update requests. Processing the updates individually causes high aggregated cost which can strain the processor and/or incur excessive TCAM lookup interrupts. This paper presents the first true batch update algorithm, ABUT. Unlike the other alleged batch update algorithms, ABUT collectively evaluates and optimizes the TCAM placement for whole batches throughout. By applying the topology grouping and maintaining the group order invariance in TCAM, ABUT achieves substantial computing time reduction yet still yields the best-in-class placement cost. Our evaluations show that ABUT is ideal for low-latency and high-throughput batch TCAM updates in modern high-performance switches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TCAM中的自适应批量更新:集体优化如何击败个体优化
由于规则顺序的限制,TCAM中的规则更新一直被认为是一个关键的技术挑战。现有算法将每次规则更新作为一个独立的任务。然而,新兴的应用程序会产生批规则更新请求。单独处理更新会导致较高的聚合成本,这可能会使处理器负担过重和/或导致过多的TCAM查找中断。本文提出了第一个真正的批量更新算法ABUT。与其他所谓的批量更新算法不同,ABUT在整个批次中集体评估和优化TCAM位置。通过在TCAM中应用拓扑分组和保持组顺序不变性,ABUT实现了大量的计算时间减少,同时仍然产生了同类最佳的放置成本。我们的评估表明,ABUT是现代高性能交换机中低延迟和高吞吐量批量TCAM更新的理想选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Message from the TPC Chairs Enabling Edge-Cloud Video Analytics for Robotics Applications Practical Analysis of Replication-Based Systems Towards Minimum Fleet for Ridesharing-Aware Mobility-on-Demand Systems Beyond Value Perturbation: Local Differential Privacy in the Temporal Setting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1