K. T. Nguyen, Gwan-Fyo Go, M. Hoang, Jincheol Ha, Jong-Oh Park, Chang-sei Kim
{"title":"The EnEMA System-Ennead Electromagnetic Actuation System-Towards locomotion control for targeted drug delivery","authors":"K. T. Nguyen, Gwan-Fyo Go, M. Hoang, Jincheol Ha, Jong-Oh Park, Chang-sei Kim","doi":"10.23919/ICCAS52745.2021.9650005","DOIUrl":null,"url":null,"abstract":"This paper presents an optimized design and development of the electromagnetic actuation (EMA) system, which can generate a strong electromagnetic field to control micro/nanomagnetic objects. The EMA system consists of nine electromagnetic sources, so called Ennead Electromagnetic Actuation (EnEMA) system. The system configuration is designed based on our proposed optimization algorithm considering the design constraints given by the user, and the optimal configuration has the most isotropic and the strongest generated field among all available candidates considering the same design constraints. The EnEMA system can control the magnetic object in 5-DoFs without singularity, which is capable of multi-task control of the micro/nanomagnetic objects. The maximum achievable magnetic field and gradient field of the system are 174 mT and 5 T/m. A prototype of the system was constructed, and calibrated, which was then used to perform precise control of magnetic particle in three-dimensional space. The system is ready for in-vivo in small animal such as rats for targeted drug delivery.","PeriodicalId":411064,"journal":{"name":"2021 21st International Conference on Control, Automation and Systems (ICCAS)","volume":"170 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 21st International Conference on Control, Automation and Systems (ICCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICCAS52745.2021.9650005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents an optimized design and development of the electromagnetic actuation (EMA) system, which can generate a strong electromagnetic field to control micro/nanomagnetic objects. The EMA system consists of nine electromagnetic sources, so called Ennead Electromagnetic Actuation (EnEMA) system. The system configuration is designed based on our proposed optimization algorithm considering the design constraints given by the user, and the optimal configuration has the most isotropic and the strongest generated field among all available candidates considering the same design constraints. The EnEMA system can control the magnetic object in 5-DoFs without singularity, which is capable of multi-task control of the micro/nanomagnetic objects. The maximum achievable magnetic field and gradient field of the system are 174 mT and 5 T/m. A prototype of the system was constructed, and calibrated, which was then used to perform precise control of magnetic particle in three-dimensional space. The system is ready for in-vivo in small animal such as rats for targeted drug delivery.