Hand Posture Classification and Recognition using the Modified Census Transform

Agnès Just, Yann Rodriguez, S. Marcel
{"title":"Hand Posture Classification and Recognition using the Modified Census Transform","authors":"Agnès Just, Yann Rodriguez, S. Marcel","doi":"10.1109/FGR.2006.62","DOIUrl":null,"url":null,"abstract":"Developing new techniques for human-computer interaction is very challenging. Vision-based techniques have the advantage of being unobtrusive and hands are a natural device that can be used for more intuitive interfaces. But in order to use hands for interaction, it is necessary to be able to recognize them in images. In this paper, we propose to apply to the hand posture classification and recognition tasks an approach that has been successfully used for face detection (B. Froba and A. Ernst, 2004). The features are based on the modified census transform and are illumination invariant. For the classification and recognition processes, a simple linear classifier is trained, using a set of feature lookup-tables. The database used for the experiments is a benchmark database in the field of posture recognition. Two protocols have been defined. We provide results following these two protocols for both the classification and recognition tasks. Results are very encouraging","PeriodicalId":109260,"journal":{"name":"7th International Conference on Automatic Face and Gesture Recognition (FGR06)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"111","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"7th International Conference on Automatic Face and Gesture Recognition (FGR06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FGR.2006.62","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 111

Abstract

Developing new techniques for human-computer interaction is very challenging. Vision-based techniques have the advantage of being unobtrusive and hands are a natural device that can be used for more intuitive interfaces. But in order to use hands for interaction, it is necessary to be able to recognize them in images. In this paper, we propose to apply to the hand posture classification and recognition tasks an approach that has been successfully used for face detection (B. Froba and A. Ernst, 2004). The features are based on the modified census transform and are illumination invariant. For the classification and recognition processes, a simple linear classifier is trained, using a set of feature lookup-tables. The database used for the experiments is a benchmark database in the field of posture recognition. Two protocols have been defined. We provide results following these two protocols for both the classification and recognition tasks. Results are very encouraging
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于改进普查变换的手部姿势分类与识别
开发人机交互的新技术是非常具有挑战性的。基于视觉的技术具有不引人注目的优点,手是一种自然的设备,可以用于更直观的界面。但是为了使用手进行交互,有必要能够在图像中识别它们。在本文中,我们提出将一种已经成功用于人脸检测的方法应用于手部姿势分类和识别任务(B. Froba和A. Ernst, 2004)。这些特征基于改进的人口普查变换,并且是光照不变性的。对于分类和识别过程,使用一组特征查找表训练一个简单的线性分类器。实验使用的数据库是姿态识别领域的一个基准数据库。已经定义了两个协议。我们为分类和识别任务提供了这两种协议的结果。结果非常令人鼓舞
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tracking using dynamic programming for appearance-based sign language recognition Multi-view face recognition by nonlinear dimensionality reduction and generalized linear models Face recognition by projection-based 3D normalization and shading subspace orthogonalization Hierarchical ensemble of Gabor Fisher classifier for face recognition Reliable and fast tracking of faces under varying pose
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1