Automated Annotation of Satellite Imagery using Model-based Projections

R. Roberts, J. Goforth, G. Weinert, C. Grant, Will R. Ray, B. Stinson, Andrew M. Duncan
{"title":"Automated Annotation of Satellite Imagery using Model-based Projections","authors":"R. Roberts, J. Goforth, G. Weinert, C. Grant, Will R. Ray, B. Stinson, Andrew M. Duncan","doi":"10.1109/AIPR.2018.8707425","DOIUrl":null,"url":null,"abstract":"GeoVisipedia is a new and novel approach to annotating satellite imagery. It uses wiki pages to annotate objects rather than simple labels. The use of wiki pages to contain annotations is particularly useful for annotating objects in imagery of complex geospatial configurations such as industrial facilities. GeoVisipedia uses the PRISM algorithm to project annotations applied to one image to other imagery, hence enabling ubiquitous annotation. This paper derives the PRISM algorithm, which uses image metadata and a 3D facility model to create a view matrix unique to each image. The view matrix is used to project model components onto a mask which aligns the components with the objects in the scene that they represent. Wiki pages are linked to model components, which are in turn linked to the image via the component mask. An illustration of the efficacy of the PRISM algorithm is provided, demonstrating the projection of model components onto an effluent stack. We conclude with a discussion of the efficiencies of GeoVisipedia over manual annotation, and the use of PRISM for creating training sets for machine learning algorithms.","PeriodicalId":230582,"journal":{"name":"2018 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2018.8707425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

GeoVisipedia is a new and novel approach to annotating satellite imagery. It uses wiki pages to annotate objects rather than simple labels. The use of wiki pages to contain annotations is particularly useful for annotating objects in imagery of complex geospatial configurations such as industrial facilities. GeoVisipedia uses the PRISM algorithm to project annotations applied to one image to other imagery, hence enabling ubiquitous annotation. This paper derives the PRISM algorithm, which uses image metadata and a 3D facility model to create a view matrix unique to each image. The view matrix is used to project model components onto a mask which aligns the components with the objects in the scene that they represent. Wiki pages are linked to model components, which are in turn linked to the image via the component mask. An illustration of the efficacy of the PRISM algorithm is provided, demonstrating the projection of model components onto an effluent stack. We conclude with a discussion of the efficiencies of GeoVisipedia over manual annotation, and the use of PRISM for creating training sets for machine learning algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用基于模型的投影的卫星图像自动标注
GeoVisipedia是一个新的和新颖的方法来注释卫星图像。它使用wiki页面来注释对象,而不是简单的标签。使用wiki页面来包含注释对于在复杂地理空间配置(如工业设施)的图像中注释对象特别有用。GeoVisipedia使用PRISM算法将应用于一张图像的注释投影到其他图像,从而实现无处不在的注释。本文导出了PRISM算法,该算法利用图像元数据和三维设施模型来创建每个图像独有的视图矩阵。视图矩阵用于将模型组件投影到遮罩上,遮罩将组件与它们所代表的场景中的对象对齐。Wiki页面链接到模型组件,模型组件又通过组件掩码链接到图像。提供了PRISM算法有效性的示例,演示了模型组件在流出物堆栈上的投影。最后,我们讨论了GeoVisipedia相对于手动注释的效率,以及使用PRISM创建机器学习算法的训练集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automated Annotation of Satellite Imagery using Model-based Projections Visualizing Compression of Deep Learning Models for Classification Malware Classification using Deep Convolutional Neural Networks An Improved Star Detection Algorithm Using a Combination of Statistical and Morphological Image Processing Techniques Improving Nuclei Classification Performance in H&E Stained Tissue Images Using Fully Convolutional Regression Network and Convolutional Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1