R. Roberts, J. Goforth, G. Weinert, C. Grant, Will R. Ray, B. Stinson, Andrew M. Duncan
{"title":"Automated Annotation of Satellite Imagery using Model-based Projections","authors":"R. Roberts, J. Goforth, G. Weinert, C. Grant, Will R. Ray, B. Stinson, Andrew M. Duncan","doi":"10.1109/AIPR.2018.8707425","DOIUrl":null,"url":null,"abstract":"GeoVisipedia is a new and novel approach to annotating satellite imagery. It uses wiki pages to annotate objects rather than simple labels. The use of wiki pages to contain annotations is particularly useful for annotating objects in imagery of complex geospatial configurations such as industrial facilities. GeoVisipedia uses the PRISM algorithm to project annotations applied to one image to other imagery, hence enabling ubiquitous annotation. This paper derives the PRISM algorithm, which uses image metadata and a 3D facility model to create a view matrix unique to each image. The view matrix is used to project model components onto a mask which aligns the components with the objects in the scene that they represent. Wiki pages are linked to model components, which are in turn linked to the image via the component mask. An illustration of the efficacy of the PRISM algorithm is provided, demonstrating the projection of model components onto an effluent stack. We conclude with a discussion of the efficiencies of GeoVisipedia over manual annotation, and the use of PRISM for creating training sets for machine learning algorithms.","PeriodicalId":230582,"journal":{"name":"2018 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2018.8707425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
GeoVisipedia is a new and novel approach to annotating satellite imagery. It uses wiki pages to annotate objects rather than simple labels. The use of wiki pages to contain annotations is particularly useful for annotating objects in imagery of complex geospatial configurations such as industrial facilities. GeoVisipedia uses the PRISM algorithm to project annotations applied to one image to other imagery, hence enabling ubiquitous annotation. This paper derives the PRISM algorithm, which uses image metadata and a 3D facility model to create a view matrix unique to each image. The view matrix is used to project model components onto a mask which aligns the components with the objects in the scene that they represent. Wiki pages are linked to model components, which are in turn linked to the image via the component mask. An illustration of the efficacy of the PRISM algorithm is provided, demonstrating the projection of model components onto an effluent stack. We conclude with a discussion of the efficiencies of GeoVisipedia over manual annotation, and the use of PRISM for creating training sets for machine learning algorithms.