Improving Nuclei Classification Performance in H&E Stained Tissue Images Using Fully Convolutional Regression Network and Convolutional Neural Network

Ali S. Hamad, I. Ersoy, F. Bunyak
{"title":"Improving Nuclei Classification Performance in H&E Stained Tissue Images Using Fully Convolutional Regression Network and Convolutional Neural Network","authors":"Ali S. Hamad, I. Ersoy, F. Bunyak","doi":"10.1109/AIPR.2018.8707397","DOIUrl":null,"url":null,"abstract":"Detection and classification of nuclei in histopathology images is an important step in the research of understanding tumor microenvironment and evaluating cancer progression and prognosis. The task is challenging due to imaging factors such as varying cell morphologies, batch-to-batch variations in staining, and sample preparation. We present a two-stage deep learning pipeline that combines a Fully Convolutional Regression Network (FCRN) that performs nuclei localization with a Convolution Neural Network (CNN) that performs nuclei classification. Instead of using hand-crafted features, the system learns the visual features needed for detection and classification of nuclei making the process robust to the aforementioned variations. The performance of the proposed system has been quantitatively evaluated on images of hematoxylin and eosin (H&E) stained colon cancer tissues and compared to the previous studies using the same data set. The proposed deep learning system produces promising results for detection and classification of nuclei in histopathology images.","PeriodicalId":230582,"journal":{"name":"2018 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2018.8707397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Detection and classification of nuclei in histopathology images is an important step in the research of understanding tumor microenvironment and evaluating cancer progression and prognosis. The task is challenging due to imaging factors such as varying cell morphologies, batch-to-batch variations in staining, and sample preparation. We present a two-stage deep learning pipeline that combines a Fully Convolutional Regression Network (FCRN) that performs nuclei localization with a Convolution Neural Network (CNN) that performs nuclei classification. Instead of using hand-crafted features, the system learns the visual features needed for detection and classification of nuclei making the process robust to the aforementioned variations. The performance of the proposed system has been quantitatively evaluated on images of hematoxylin and eosin (H&E) stained colon cancer tissues and compared to the previous studies using the same data set. The proposed deep learning system produces promising results for detection and classification of nuclei in histopathology images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用全卷积回归网络和卷积神经网络改进H&E染色组织图像的核分类性能
组织病理图像中细胞核的检测和分类是了解肿瘤微环境、评价肿瘤进展和预后的重要一步。由于不同的细胞形态、染色批次之间的差异和样品制备等成像因素,这项任务具有挑战性。我们提出了一个两阶段的深度学习管道,它结合了执行核定位的全卷积回归网络(FCRN)和执行核分类的卷积神经网络(CNN)。该系统不使用手工制作的特征,而是学习检测和分类核所需的视觉特征,使该过程对上述变化具有鲁棒性。该系统的性能已在苏木精和伊红(H&E)染色的结肠癌组织图像上进行了定量评估,并与先前使用相同数据集的研究进行了比较。所提出的深度学习系统在组织病理学图像的细胞核检测和分类方面产生了有希望的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automated Annotation of Satellite Imagery using Model-based Projections Visualizing Compression of Deep Learning Models for Classification Malware Classification using Deep Convolutional Neural Networks An Improved Star Detection Algorithm Using a Combination of Statistical and Morphological Image Processing Techniques Improving Nuclei Classification Performance in H&E Stained Tissue Images Using Fully Convolutional Regression Network and Convolutional Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1