CNN based dark signal non-uniformity estimation

M. Geese, Paul Ruhnau, B. Jähne
{"title":"CNN based dark signal non-uniformity estimation","authors":"M. Geese, Paul Ruhnau, B. Jähne","doi":"10.1109/CNNA.2012.6331408","DOIUrl":null,"url":null,"abstract":"Image sensors come with a spatial inhomogeneity, known as Fixed Pattern Noise, that degrades the image quality. Especially the dark signal non uniformity (DSNU) component of the FPN drifts with time and depends highly on temperature and exposure time. In this paper we introduce a cellular neural network (CNN) to estimate the DSNU from a given set of recorded images. Therefore the foundations of a previously presented maximum likelihood estimation method are used. A rigorous mathematical derivation exploits the available sensor statistics and uses only well motivated statistical models to calculate the CNN's synaptic weights. The advantages of the resulting CNN-method are continuous DSNU updates and a reduction of the computational complexity. Furthermore, a comparison based on ground truth correction patterns shows a significant performance increase to related methods.","PeriodicalId":387536,"journal":{"name":"2012 13th International Workshop on Cellular Nanoscale Networks and their Applications","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 13th International Workshop on Cellular Nanoscale Networks and their Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNNA.2012.6331408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Image sensors come with a spatial inhomogeneity, known as Fixed Pattern Noise, that degrades the image quality. Especially the dark signal non uniformity (DSNU) component of the FPN drifts with time and depends highly on temperature and exposure time. In this paper we introduce a cellular neural network (CNN) to estimate the DSNU from a given set of recorded images. Therefore the foundations of a previously presented maximum likelihood estimation method are used. A rigorous mathematical derivation exploits the available sensor statistics and uses only well motivated statistical models to calculate the CNN's synaptic weights. The advantages of the resulting CNN-method are continuous DSNU updates and a reduction of the computational complexity. Furthermore, a comparison based on ground truth correction patterns shows a significant performance increase to related methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于CNN的暗信号非均匀性估计
图像传感器具有空间不均匀性,称为固定模式噪声,会降低图像质量。特别是FPN的暗信号不均匀性(DSNU)部分随时间漂移,高度依赖于温度和曝光时间。在本文中,我们引入了一种细胞神经网络(CNN)来从给定的一组记录图像中估计DSNU。因此,使用了先前提出的最大似然估计方法的基础。严格的数学推导利用可用的传感器统计数据,并仅使用良好动机的统计模型来计算CNN的突触权重。由此产生的cnn方法的优点是连续的DSNU更新和降低了计算复杂度。此外,基于地面真值校正模式的比较表明,该方法的性能显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synchronization in cellular spin torque oscillator arrays CNN based dark signal non-uniformity estimation Advanced background elimination in digital holographic microscopy Boolean and non-boolean nearest neighbor architectures for out-of-plane nanomagnet logic 2nd order 2-D spatial filters and Cellular Neural Network implementations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1