The benchmark data SET CeTReS.B-MI for in vitro mitosis detection

T. Becker, W. Kanje, D. Rapoport, Konstantin Thierbach, N. Scherf, Ingo Röder, A. M. Mamlouk
{"title":"The benchmark data SET CeTReS.B-MI for in vitro mitosis detection","authors":"T. Becker, W. Kanje, D. Rapoport, Konstantin Thierbach, N. Scherf, Ingo Röder, A. M. Mamlouk","doi":"10.1109/ISBI.2014.6867910","DOIUrl":null,"url":null,"abstract":"Mitosis detection poses a major challenge in cell tracking as mitoses are crucial events in the construction of genealogical trees. Making use of typical mitotic patterns that can be seen in phase contrast images of time lapse experiments, we propose a new benchmark data set CeTReS.B-MI consisting of mitotic and non-mitotic cells from the publicly accessible, fully labeled data set CeTReS.B. Using this data, two simple mitosis detectors (based on compactness and intensity) are used exemplarily to train, test and compare their ability to detect mitotic events. As a gold standard, we propose a linear support vector machine (SVM), which is able to separate the classes with a high accuracy (AUC=0.993). To illustrate the potential impact of a robust mitosis detection, the proposed classifiers are combined with two state of the art cell tracking algorithms. For both algorithms, performance does change when adding mitosis detection. Finally, this evaluation also emphasizes how easy implementation and comparison becomes, having suitable benchmark data at hand.","PeriodicalId":440405,"journal":{"name":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","volume":"212 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2014.6867910","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Mitosis detection poses a major challenge in cell tracking as mitoses are crucial events in the construction of genealogical trees. Making use of typical mitotic patterns that can be seen in phase contrast images of time lapse experiments, we propose a new benchmark data set CeTReS.B-MI consisting of mitotic and non-mitotic cells from the publicly accessible, fully labeled data set CeTReS.B. Using this data, two simple mitosis detectors (based on compactness and intensity) are used exemplarily to train, test and compare their ability to detect mitotic events. As a gold standard, we propose a linear support vector machine (SVM), which is able to separate the classes with a high accuracy (AUC=0.993). To illustrate the potential impact of a robust mitosis detection, the proposed classifiers are combined with two state of the art cell tracking algorithms. For both algorithms, performance does change when adding mitosis detection. Finally, this evaluation also emphasizes how easy implementation and comparison becomes, having suitable benchmark data at hand.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基准数据SET CeTReS。B-MI用于体外有丝分裂检测
由于有丝分裂是构建谱系树的关键事件,因此有丝分裂检测是细胞追踪的一个重大挑战。利用时移实验相衬图像中典型的有丝分裂模式,我们提出了一个新的基准数据集ceres。B-MI由有丝分裂细胞和非有丝分裂细胞组成,这些细胞来自可公开访问的完全标记数据集CeTReS.B。利用这些数据,两种简单的有丝分裂检测器(基于致密性和强度)被用于训练、测试和比较它们检测有丝分裂事件的能力。作为金标准,我们提出了线性支持向量机(SVM),它能够以较高的准确率(AUC=0.993)分离类别。为了说明强大的有丝分裂检测的潜在影响,提出的分类器与两种最先进的细胞跟踪算法相结合。对于这两种算法,当添加有丝分裂检测时,性能确实会发生变化。最后,这个评估还强调了在手头有合适的基准数据的情况下,实现和比较是多么容易。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MRI based attenuation correction for PET/MRI via MRF segmentation and sparse regression estimated CT DTI-DeformIt: Generating ground-truth validation data for diffusion tensor image analysis tasks Functional parcellation of the hippocampus by clustering resting state fMRI signals Detecting cell assembly interaction patterns via Bayesian based change-point detection and graph inference model Topological texture-based method for mass detection in breast ultrasound image
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1