Learning cross-domain social knowledge from cognitive scripts

M. Gawish, Safia Abbas, M. Mostafa, Abdel-badeeh M. Salem
{"title":"Learning cross-domain social knowledge from cognitive scripts","authors":"M. Gawish, Safia Abbas, M. Mostafa, Abdel-badeeh M. Salem","doi":"10.1109/ICCES.2013.6707163","DOIUrl":null,"url":null,"abstract":"Creating artificial intelligence (AI) agents with computational models based on human cognitive abilities is an ongoing research area. This paper proposes a new evolutionary cognitive model for cross-domain learning, which aims to improve the cognitive learning process by extracting new experienced knowledge from pre-existing socio-cultural cognitive scripts. This knowledge is necessary for the Al agents to develop learning for the current faced social situation (Target). The model depends basically on two phases; the retrieval phase and the learning phase. In the retrieval phase, Pharaoh algorithm is utilized to retrieve the most relevant cognitive script (Base) to the target script considering the context. Whereas, the learning phase employs evolutional processes to enrich the target script. Finally, the enriched script replaces the target script in the evolved script-base in order to be used in the learning and retrieval phases again.","PeriodicalId":277807,"journal":{"name":"2013 8th International Conference on Computer Engineering & Systems (ICCES)","volume":"2013 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 8th International Conference on Computer Engineering & Systems (ICCES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCES.2013.6707163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Creating artificial intelligence (AI) agents with computational models based on human cognitive abilities is an ongoing research area. This paper proposes a new evolutionary cognitive model for cross-domain learning, which aims to improve the cognitive learning process by extracting new experienced knowledge from pre-existing socio-cultural cognitive scripts. This knowledge is necessary for the Al agents to develop learning for the current faced social situation (Target). The model depends basically on two phases; the retrieval phase and the learning phase. In the retrieval phase, Pharaoh algorithm is utilized to retrieve the most relevant cognitive script (Base) to the target script considering the context. Whereas, the learning phase employs evolutional processes to enrich the target script. Finally, the enriched script replaces the target script in the evolved script-base in order to be used in the learning and retrieval phases again.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从认知脚本中学习跨领域社会知识
利用基于人类认知能力的计算模型创建人工智能(AI)代理是一个正在进行的研究领域。本文提出了一种新的跨领域学习的进化认知模型,该模型旨在通过从已有的社会文化认知脚本中提取新的经验知识来改善认知学习过程。这些知识对于ai智能体针对当前面临的社会状况进行学习是必要的(目标)。该模型主要依赖于两个阶段;检索阶段和学习阶段。在检索阶段,利用法老算法根据上下文将最相关的认知文字(Base)检索到目标文字。而学习阶段则采用进化过程来丰富目标脚本。最后,改进后的脚本将替换进化后的脚本库中的目标脚本,以便再次用于学习和检索阶段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ensemble classifiers for biomedical data: Performance evaluation Hardware architecture dedicated for arithmetic mean filtration implemented in FPGA Non-fragile bilinear state feedback controller for a class of MIMO bilinear systems Learning cross-domain social knowledge from cognitive scripts Design and implementation of course timetabling system based on genetic algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1