{"title":"Practical Boundary Conditions for Electronic Structure Calculations","authors":"E. Tsuchida","doi":"10.23967/wccm-apcom.2022.092","DOIUrl":null,"url":null,"abstract":". Computational materials design is an active area of research which aims at predicting phys-ical and chemical properties of various materials from first-principles electronic structure calculations. To keep the computational costs manageable, the Schr¨odinger equations are often approximated by Kohn-Sham equations within the framework of density-functional theory. These Kohn-Sham equations are solved numerically either by a basis set expansion or real-space discretization under given boundary conditions. In the case of a plane-wave basis set, it is common practice to apply periodic boundary conditions in all directions, while isolated boundary conditions are more common for the atomic basis set. However, there are many other options besides these standard boundary conditions. In this pre-sentation, we will explore several non-standard boundary conditions which exploit the characteristics of each system, such as surfaces, interfaces, and cyclic/helical structures, to minimize the computational costs of electronic structure calculations. Most of these boundary conditions are easily implemented by minor modifications of existing electronic structure codes. Numerical examples on a few model systems are also presented for the validation of these boundary conditions.","PeriodicalId":429847,"journal":{"name":"15th World Congress on Computational Mechanics (WCCM-XV) and 8th Asian Pacific Congress on Computational Mechanics (APCOM-VIII)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"15th World Congress on Computational Mechanics (WCCM-XV) and 8th Asian Pacific Congress on Computational Mechanics (APCOM-VIII)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23967/wccm-apcom.2022.092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

. Computational materials design is an active area of research which aims at predicting phys-ical and chemical properties of various materials from first-principles electronic structure calculations. To keep the computational costs manageable, the Schr¨odinger equations are often approximated by Kohn-Sham equations within the framework of density-functional theory. These Kohn-Sham equations are solved numerically either by a basis set expansion or real-space discretization under given boundary conditions. In the case of a plane-wave basis set, it is common practice to apply periodic boundary conditions in all directions, while isolated boundary conditions are more common for the atomic basis set. However, there are many other options besides these standard boundary conditions. In this pre-sentation, we will explore several non-standard boundary conditions which exploit the characteristics of each system, such as surfaces, interfaces, and cyclic/helical structures, to minimize the computational costs of electronic structure calculations. Most of these boundary conditions are easily implemented by minor modifications of existing electronic structure codes. Numerical examples on a few model systems are also presented for the validation of these boundary conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电子结构计算的实用边界条件
. 计算材料设计是一个活跃的研究领域,旨在通过第一性原理的电子结构计算来预测各种材料的物理和化学性质。为了使计算成本可控,Schr¨odinger方程通常在密度泛函理论的框架内由Kohn-Sham方程近似。在给定的边界条件下,用基集展开法或实空间离散法对这些Kohn-Sham方程进行了数值求解。在平面波基集的情况下,通常在所有方向上应用周期边界条件,而原子基集则更常用孤立边界条件。但是,除了这些标准边界条件之外,还有许多其他选择。在本报告中,我们将探讨几个非标准边界条件,这些条件利用了每个系统的特征,如表面、界面和循环/螺旋结构,以最大限度地减少电子结构计算的计算成本。大多数这些边界条件很容易通过现有的电子结构代码的微小修改来实现。最后给出了几个模型系统的数值算例,验证了边界条件的正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Forensic Evaluation of Historic Shell Structure: Development of In-Situ Geometry New calculation scheme for compressible Euler equation Numerical study on the hydrate-rich sediment behaviour during depressurization Wind Pressure Characteristics of High-rise buildings in Middle and High-height Urban Areas Spread over Local Terrain Out of Plane Lower Bound Limit Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1