High-frequency electrical circuit model for integrated capacitors utilizing lossy nanostructures

S. Krause, R. Andersson, M. Bylund, V. Marknäs, A. Saleem, Elisa Passalaqua, Shafiq Kabir, V. Desmaris
{"title":"High-frequency electrical circuit model for integrated capacitors utilizing lossy nanostructures","authors":"S. Krause, R. Andersson, M. Bylund, V. Marknäs, A. Saleem, Elisa Passalaqua, Shafiq Kabir, V. Desmaris","doi":"10.1109/ECTC32696.2021.00197","DOIUrl":null,"url":null,"abstract":"A physics-based model is presented that captures the electrical high-frequency behavior of low-dimensional nanostructures used in emerging technologies such as the ultra-high-density capacitor. Derived from transmission line theory the analytical expression provides a frequency-dependent admittance of a lossy nanostructure, which can be numerically integrated over arbitrary areas comprising the nanostructure. Edge effects, a distributed nature of resistivity or dimensions of the nanostructure comprising the device can be taken into consideration and make it a powerful tool for designing future integrated circuits. The model predictions show an excellent match with hardware measurements up to 3 GHz on state-of-the-art carbon nanofiber based MIM-capacitors with capacitance densities up to 500 nF/mm2 at $\\mathrm{6}\\ \\mu \\mathrm{m}$ device height.","PeriodicalId":351817,"journal":{"name":"2021 IEEE 71st Electronic Components and Technology Conference (ECTC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 71st Electronic Components and Technology Conference (ECTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTC32696.2021.00197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A physics-based model is presented that captures the electrical high-frequency behavior of low-dimensional nanostructures used in emerging technologies such as the ultra-high-density capacitor. Derived from transmission line theory the analytical expression provides a frequency-dependent admittance of a lossy nanostructure, which can be numerically integrated over arbitrary areas comprising the nanostructure. Edge effects, a distributed nature of resistivity or dimensions of the nanostructure comprising the device can be taken into consideration and make it a powerful tool for designing future integrated circuits. The model predictions show an excellent match with hardware measurements up to 3 GHz on state-of-the-art carbon nanofiber based MIM-capacitors with capacitance densities up to 500 nF/mm2 at $\mathrm{6}\ \mu \mathrm{m}$ device height.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用损耗纳米结构集成电容器的高频电路模型
提出了一种基于物理的模型,用于捕获用于新兴技术(如超高密度电容器)的低维纳米结构的电高频行为。由传输线理论导出的解析表达式提供了损耗纳米结构的频率相关导纳,可以在包含纳米结构的任意区域上进行数值积分。可以考虑边缘效应、电阻率的分布性质或组成器件的纳米结构的尺寸,使其成为设计未来集成电路的有力工具。模型预测显示,在最先进的基于碳纳米纤维的mim电容器上,在$\ mathm {6}\ \mu \ mathm {m}$器件高度上,电容密度高达500 nF/mm2,硬件测量高达3 GHz,与模型预测非常匹配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Magnetically Actuated Test Method for Interfacial Fracture Reliability Assessment nSiP(System in Package) Platform for various module packaging applications IEEE 71st Electronic Components and Technology Conference [Title page] Evaluation of Low-k Integration Integrity Using Shear Testing on Sub-30 Micron Micro-Cu Pillars CoW Package Solution for Improving Thermal Characteristic of TSV-SiP for AI-Inference
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1