Adaptive surface reconstruction based on implicit PHT-splines

Jun Wang, Zhouwang Yang, Liangbing Jin, J. Deng, Falai Chen
{"title":"Adaptive surface reconstruction based on implicit PHT-splines","authors":"Jun Wang, Zhouwang Yang, Liangbing Jin, J. Deng, Falai Chen","doi":"10.1145/1839778.1839792","DOIUrl":null,"url":null,"abstract":"We present a new shape representation, the implicit PHT-spline, which allows us to efficiently reconstruct surface models from very large sets of points. A PHT-spline is a piece-wise tricubic polynomial over a 3D hierarchical T-mesh, the basis functions of which have good properties such as non-negativity, compact support and partition of unity. Given a point cloud, an implicit PHT-spline surface is constructed by interpolating the Hermitian information at the basis vertices of the T-mesh, and the Hermitian information is obtained by estimating the geometric quantities on the underlying surface of the point cloud. We use the natural hierarchical structure of PHT-splines to reconstruct surfaces adaptively, with simple error-guided local refinements that adapt to the regional geometric details of the target object. Unlike some previous methods that heavily depend on the normal information of the point cloud, our approach only uses it for orientation and is insensitive to the noise of normals. Examples show that our approach can produce high quality reconstruction surfaces very efficiently.","PeriodicalId":216067,"journal":{"name":"Symposium on Solid and Physical Modeling","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium on Solid and Physical Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1839778.1839792","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

We present a new shape representation, the implicit PHT-spline, which allows us to efficiently reconstruct surface models from very large sets of points. A PHT-spline is a piece-wise tricubic polynomial over a 3D hierarchical T-mesh, the basis functions of which have good properties such as non-negativity, compact support and partition of unity. Given a point cloud, an implicit PHT-spline surface is constructed by interpolating the Hermitian information at the basis vertices of the T-mesh, and the Hermitian information is obtained by estimating the geometric quantities on the underlying surface of the point cloud. We use the natural hierarchical structure of PHT-splines to reconstruct surfaces adaptively, with simple error-guided local refinements that adapt to the regional geometric details of the target object. Unlike some previous methods that heavily depend on the normal information of the point cloud, our approach only uses it for orientation and is insensitive to the noise of normals. Examples show that our approach can produce high quality reconstruction surfaces very efficiently.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于隐式pht样条的自适应曲面重建
我们提出了一种新的形状表示,隐式pht样条,它允许我们从非常大的点集有效地重建表面模型。pht样条是三维分层t网格上的分段三次多项式,其基函数具有非负性、紧支持性和单位分割性等良好的性质。给定一个点云,通过插值t网格基顶点处的厄米特信息构建隐式pht样条曲面,并通过估计点云下表面的几何量获得厄米特信息。我们使用pht样条的自然层次结构自适应重建表面,并使用简单的误差引导局部改进来适应目标物体的区域几何细节。不像以前的一些方法严重依赖于点云的法线信息,我们的方法只使用它来定位,对法线的噪声不敏感。实例表明,该方法可以非常有效地生成高质量的重构曲面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust Minkowski sums of polyhedra via controlled linear perturbation Adaptive surface reconstruction based on implicit PHT-splines Hexahedral shell mesh construction via volumetric polycube map Hierarchical surface fairing with constraints Accurate moment computation using the GPU
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1