Hexahedral shell mesh construction via volumetric polycube map

Shuchu Han, Jiazhi Xia, Ying He
{"title":"Hexahedral shell mesh construction via volumetric polycube map","authors":"Shuchu Han, Jiazhi Xia, Ying He","doi":"10.1145/1839778.1839796","DOIUrl":null,"url":null,"abstract":"Shells are three-dimensional structures. One dimension, the thickness, is much smaller than the other two dimensions. Shell structures can be widely found in many real-world objects. This paper presents a method to construct a layered hexahedral mesh for shell objects. Given a closed 2-manifold and the user-specified thickness, we construct the shell space using the distance field and then parameterize the shell space to a polycube domain. The volume parameterization induces the hexahedral tessellation in the object shell space. As a result, the constructed mesh is an all-hexahedral mesh in which most of the vertices are regular, i.e., the valence is 6 for interior vertices and 5 for boundary vertices. The mesh also has a layered structure that all layers have exactly the same tessellation. We prove our parameterization is guaranteed to be bijective. As a result, the constructed hexahedral mesh is free of degeneracy, such as self-intersection, flip-over, etc. We also show that the iso-parametric line (in the thickness dimension) is orthogonal to the other two isoparametric lines. We demonstrate the efficacy of our method upon models of various topology.","PeriodicalId":216067,"journal":{"name":"Symposium on Solid and Physical Modeling","volume":"127 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium on Solid and Physical Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1839778.1839796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

Abstract

Shells are three-dimensional structures. One dimension, the thickness, is much smaller than the other two dimensions. Shell structures can be widely found in many real-world objects. This paper presents a method to construct a layered hexahedral mesh for shell objects. Given a closed 2-manifold and the user-specified thickness, we construct the shell space using the distance field and then parameterize the shell space to a polycube domain. The volume parameterization induces the hexahedral tessellation in the object shell space. As a result, the constructed mesh is an all-hexahedral mesh in which most of the vertices are regular, i.e., the valence is 6 for interior vertices and 5 for boundary vertices. The mesh also has a layered structure that all layers have exactly the same tessellation. We prove our parameterization is guaranteed to be bijective. As a result, the constructed hexahedral mesh is free of degeneracy, such as self-intersection, flip-over, etc. We also show that the iso-parametric line (in the thickness dimension) is orthogonal to the other two isoparametric lines. We demonstrate the efficacy of our method upon models of various topology.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
六面体壳网格结构通过体积多边形映射
壳是三维结构。一个维度,即厚度,比另外两个维度要小得多。壳结构可以在许多现实世界的对象中广泛发现。提出了一种壳类物体分层六面体网格的构造方法。给定一个封闭的2流形和用户指定的厚度,我们利用距离域构造壳空间,然后将壳空间参数化为一个聚立方域。体积参数化在物体壳体空间中产生六面体镶嵌。因此,构建的网格是一个全六面体网格,其中大部分顶点是规则的,即内部顶点的价为6,边界顶点的价为5。网格也有一个分层结构,所有的层都有完全相同的镶嵌。我们证明了我们的参数化保证是客观的。因此,构建的六面体网格不存在自交、翻转等简并现象。我们还表明,等参数线(在厚度维度上)与其他两条等参数线正交。我们证明了我们的方法在各种拓扑模型上的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust Minkowski sums of polyhedra via controlled linear perturbation Adaptive surface reconstruction based on implicit PHT-splines Hexahedral shell mesh construction via volumetric polycube map Hierarchical surface fairing with constraints Accurate moment computation using the GPU
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1