Experimental and numerical analysis of the multiphase flow distribution in multi plate wetclutches for HVT transmissions under actual operating conditions

Stefano Terzi, M. Milani, L. Montorsi, B. Manhartsgruber
{"title":"Experimental and numerical analysis of the multiphase flow distribution in multi plate wetclutches for HVT transmissions under actual operating conditions","authors":"Stefano Terzi, M. Milani, L. Montorsi, B. Manhartsgruber","doi":"10.1109/GFPS.2018.8472395","DOIUrl":null,"url":null,"abstract":"The paper investigates the multiphase flow through the plates of multi plate wet-clutches for hydro- mechanical variable transmission in order to address the performance of the lubricating systems and its influence on the thermo-mechanical stresses on the plates. The lubricating oil distribution is very difficult to measure experimentally on a real geometry, therefore, a numerical model for the prediction of the flow distribution within the clutch plates is proposed. The volume of fluid approach is used to model the multi-phase flow that characterizes the component and a modular approach is defined to reproduce accurately the real geometry. Furthermore, the numerical modeling is validated against measurements carried out on an ad-hoc designed test rig. The testing facility replicates both the geometry of a real clutch and the actual operating conditions. Transparent PMMA components and fast imaging techniques are used to capture the multiphase flow pattern within the gear distributor chamber, while a 3D printed component and a specific collector system have been designed in order to reproduce the disks position and measure the oil distribution through the plates’ clearances by varying the working conditions. A good agreement between the numerical and the experimental results was found and the analysis highlighted the importance of modeling the multi-phase nature of the lubrication process for the accurate prediction of the oil distribution within multi plate wet-clutches.)","PeriodicalId":273799,"journal":{"name":"2018 Global Fluid Power Society PhD Symposium (GFPS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Global Fluid Power Society PhD Symposium (GFPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GFPS.2018.8472395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The paper investigates the multiphase flow through the plates of multi plate wet-clutches for hydro- mechanical variable transmission in order to address the performance of the lubricating systems and its influence on the thermo-mechanical stresses on the plates. The lubricating oil distribution is very difficult to measure experimentally on a real geometry, therefore, a numerical model for the prediction of the flow distribution within the clutch plates is proposed. The volume of fluid approach is used to model the multi-phase flow that characterizes the component and a modular approach is defined to reproduce accurately the real geometry. Furthermore, the numerical modeling is validated against measurements carried out on an ad-hoc designed test rig. The testing facility replicates both the geometry of a real clutch and the actual operating conditions. Transparent PMMA components and fast imaging techniques are used to capture the multiphase flow pattern within the gear distributor chamber, while a 3D printed component and a specific collector system have been designed in order to reproduce the disks position and measure the oil distribution through the plates’ clearances by varying the working conditions. A good agreement between the numerical and the experimental results was found and the analysis highlighted the importance of modeling the multi-phase nature of the lubrication process for the accurate prediction of the oil distribution within multi plate wet-clutches.)
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
实际工况下高压变速器多片湿离合器多相流分布的实验与数值分析
为了研究润滑系统的性能及其对液压-机械变量传动多片湿式离合器片上热机械应力的影响,研究了多片湿式离合器片间的多相流动。润滑油在实际几何结构上的分布很难通过实验测量,因此提出了一种预测离合器片内流量分布的数值模型。采用流体体积法对具有部件特征的多相流进行建模,并定义了一种模块化方法来精确再现实际几何形状。此外,数值模拟与在一个特别设计的试验台上进行的测量进行了验证。测试设备复制了一个真正的离合器的几何形状和实际操作条件。透明PMMA组件和快速成像技术用于捕捉齿轮分压器腔内的多相流模式,同时设计了3D打印组件和特定的收集器系统,以便通过改变工作条件来重现磁盘位置并测量通过板间隙的油分布。数值计算结果与实验结果吻合较好,强调了对润滑过程多相特性进行建模对于准确预测多片湿式离合器内油分布的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application of Model Predictive Control in Discrete Displacement Cylinders to Drive a Knuckle Boom Crane Speed Compensation in Hydraulic Wind Turbine Control Experimental and numerical analysis of the multiphase flow distribution in multi plate wetclutches for HVT transmissions under actual operating conditions Study of a Self-Contained Electro-Hydraulic Cylinder Drive Design and Experimental Research of a Plastic Gerotor Pump
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1