Study of a Self-Contained Electro-Hydraulic Cylinder Drive

D. Hagen, D. Padovani, M. Ebbesen
{"title":"Study of a Self-Contained Electro-Hydraulic Cylinder Drive","authors":"D. Hagen, D. Padovani, M. Ebbesen","doi":"10.1109/GFPS.2018.8472360","DOIUrl":null,"url":null,"abstract":"Self-contained electro-hydraulic cylinders that can be powered just by an electrical wire will be popular in the coming years. Combining electrical-drives and hydraulic cylin- ders exploits some excellent properties of these two technologies and enables flexible implementation. To fully benefit from such a drive solution, there is the need to develop electro-hydraulic cylinders capable of operating independently as opposed to standard hydraulic systems that are connected to a central power supply. Therefore, this paper presents a numerical investigation of a self-contained electro-hydraulic cylinder with passive load- holding capability. The corresponding dynamic model is proposed and used to predict the system behavior with a view to future implementation. The simulations show the proposed drive guar- antees proper functioning in four-quadrant operations.","PeriodicalId":273799,"journal":{"name":"2018 Global Fluid Power Society PhD Symposium (GFPS)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Global Fluid Power Society PhD Symposium (GFPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GFPS.2018.8472360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Self-contained electro-hydraulic cylinders that can be powered just by an electrical wire will be popular in the coming years. Combining electrical-drives and hydraulic cylin- ders exploits some excellent properties of these two technologies and enables flexible implementation. To fully benefit from such a drive solution, there is the need to develop electro-hydraulic cylinders capable of operating independently as opposed to standard hydraulic systems that are connected to a central power supply. Therefore, this paper presents a numerical investigation of a self-contained electro-hydraulic cylinder with passive load- holding capability. The corresponding dynamic model is proposed and used to predict the system behavior with a view to future implementation. The simulations show the proposed drive guar- antees proper functioning in four-quadrant operations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种独立电液缸驱动装置的研究
在未来几年,仅靠电线就能驱动的自给式电液缸将会流行起来。电驱动与液压缸的结合利用了这两种技术的一些优良特性,实现起来更加灵活。为了充分利用这种驱动解决方案,需要开发能够独立运行的电液缸,而不是连接到中央电源的标准液压系统。因此,本文对具有被动持载能力的自备电液缸进行了数值研究。提出了相应的动态模型,并用于预测系统的行为,以便将来实现。仿真结果表明,所提出的驱动保证在四象限操作中正常工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application of Model Predictive Control in Discrete Displacement Cylinders to Drive a Knuckle Boom Crane Speed Compensation in Hydraulic Wind Turbine Control Experimental and numerical analysis of the multiphase flow distribution in multi plate wetclutches for HVT transmissions under actual operating conditions Study of a Self-Contained Electro-Hydraulic Cylinder Drive Design and Experimental Research of a Plastic Gerotor Pump
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1