Saman Zadtootaghaj, Nabajeet Barman, Rakesh Rao Ramachandra Rao, Steve Göring, M. Martini, A. Raake, S. Möller
{"title":"DEMI: Deep Video Quality Estimation Model using Perceptual Video Quality Dimensions","authors":"Saman Zadtootaghaj, Nabajeet Barman, Rakesh Rao Ramachandra Rao, Steve Göring, M. Martini, A. Raake, S. Möller","doi":"10.1109/MMSP48831.2020.9287080","DOIUrl":null,"url":null,"abstract":"Existing works in the field of quality assessment focus separately on gaming and non-gaming content. Along with the traditional modeling approaches, deep learning based approaches have been used to develop quality models, due to their high prediction accuracy. In this paper, we present a deep learning based quality estimation model considering both gaming and non-gaming videos. The model is developed in three phases. First, a convolutional neural network (CNN) is trained based on an objective metric which allows the CNN to learn video artifacts such as blurriness and blockiness. Next, the model is fine-tuned based on a small image quality dataset using blockiness and blurriness ratings. Finally, a Random Forest is used to pool frame-level predictions and temporal information of videos in order to predict the overall video quality. The light-weight, low complexity nature of the model makes it suitable for real-time applications considering both gaming and non-gaming content while achieving similar performance to existing state-of-the-art model NDNetGaming. The model implementation for testing is available on GitHub1.","PeriodicalId":188283,"journal":{"name":"2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP48831.2020.9287080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
Existing works in the field of quality assessment focus separately on gaming and non-gaming content. Along with the traditional modeling approaches, deep learning based approaches have been used to develop quality models, due to their high prediction accuracy. In this paper, we present a deep learning based quality estimation model considering both gaming and non-gaming videos. The model is developed in three phases. First, a convolutional neural network (CNN) is trained based on an objective metric which allows the CNN to learn video artifacts such as blurriness and blockiness. Next, the model is fine-tuned based on a small image quality dataset using blockiness and blurriness ratings. Finally, a Random Forest is used to pool frame-level predictions and temporal information of videos in order to predict the overall video quality. The light-weight, low complexity nature of the model makes it suitable for real-time applications considering both gaming and non-gaming content while achieving similar performance to existing state-of-the-art model NDNetGaming. The model implementation for testing is available on GitHub1.