{"title":"Learned BRIEF – transferring the knowledge from hand-crafted to learning-based descriptors","authors":"Nina Žižakić, A. Pižurica","doi":"10.1109/MMSP48831.2020.9287159","DOIUrl":null,"url":null,"abstract":"In this paper, we present a novel approach for designing local image descriptors that learn from data and from hand-crafted descriptors. In particular, we construct a learning model that first mimics the behaviour of a hand-crafted descriptor and then learns to improve upon it in an unsupervised manner. We demonstrate the use of this knowledge-transfer framework by constructing the learned BRIEF descriptor based on the well-known hand-crafted descriptor BRIEF. We implement our learned BRIEF with a convolutional autoencoder architecture. Evaluation on the HPatches benchmark for local image descriptors shows the effectiveness of the proposed approach in the tasks of patch retrieval, patch verification, and image matching.","PeriodicalId":188283,"journal":{"name":"2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP48831.2020.9287159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, we present a novel approach for designing local image descriptors that learn from data and from hand-crafted descriptors. In particular, we construct a learning model that first mimics the behaviour of a hand-crafted descriptor and then learns to improve upon it in an unsupervised manner. We demonstrate the use of this knowledge-transfer framework by constructing the learned BRIEF descriptor based on the well-known hand-crafted descriptor BRIEF. We implement our learned BRIEF with a convolutional autoencoder architecture. Evaluation on the HPatches benchmark for local image descriptors shows the effectiveness of the proposed approach in the tasks of patch retrieval, patch verification, and image matching.