{"title":"Low power circuit optimization for IoT","authors":"M. Pronath","doi":"10.1109/SOCC.2017.8225982","DOIUrl":null,"url":null,"abstract":"Designing circuits for enhanced IoT (“Internet of Things”) applications is one of the current growth driver for the electronics industry. Optimizing such circuits for lowest power consumption while maximize functionality and performance is key for successful implementation of such circuits in the IoT systems. IoT devices are diverse in nature but are typically constrained by limited power availability, limited area budget and the need for modularity of design. The burden of ultra-low-power budget unfortunately doesn't necessarily mean that other performance requirements are relaxed. The tutorial is therefore geared towards designers of IoT devices including sensors, MEMS, mobile devices, medical sensors, wireless communication devices, near field communication devices, energy harvesting designs, mobile devices, and wireless communication devices. It will focus on how automated circuit sizing and tuning methodologies can be used to enhance existing design expertise to reduce power consumption while trade-off with other circuit performances. Additionally it will be shown how features like circuit sensitivity analysis can be used for confirming design hypotheses. Using such a verification and optimization environment can help systematically and fully explore design's operating, design and statistical design space.","PeriodicalId":366264,"journal":{"name":"2017 30th IEEE International System-on-Chip Conference (SOCC)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 30th IEEE International System-on-Chip Conference (SOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOCC.2017.8225982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Designing circuits for enhanced IoT (“Internet of Things”) applications is one of the current growth driver for the electronics industry. Optimizing such circuits for lowest power consumption while maximize functionality and performance is key for successful implementation of such circuits in the IoT systems. IoT devices are diverse in nature but are typically constrained by limited power availability, limited area budget and the need for modularity of design. The burden of ultra-low-power budget unfortunately doesn't necessarily mean that other performance requirements are relaxed. The tutorial is therefore geared towards designers of IoT devices including sensors, MEMS, mobile devices, medical sensors, wireless communication devices, near field communication devices, energy harvesting designs, mobile devices, and wireless communication devices. It will focus on how automated circuit sizing and tuning methodologies can be used to enhance existing design expertise to reduce power consumption while trade-off with other circuit performances. Additionally it will be shown how features like circuit sensitivity analysis can be used for confirming design hypotheses. Using such a verification and optimization environment can help systematically and fully explore design's operating, design and statistical design space.