Low power circuit optimization for IoT

M. Pronath
{"title":"Low power circuit optimization for IoT","authors":"M. Pronath","doi":"10.1109/SOCC.2017.8225982","DOIUrl":null,"url":null,"abstract":"Designing circuits for enhanced IoT (“Internet of Things”) applications is one of the current growth driver for the electronics industry. Optimizing such circuits for lowest power consumption while maximize functionality and performance is key for successful implementation of such circuits in the IoT systems. IoT devices are diverse in nature but are typically constrained by limited power availability, limited area budget and the need for modularity of design. The burden of ultra-low-power budget unfortunately doesn't necessarily mean that other performance requirements are relaxed. The tutorial is therefore geared towards designers of IoT devices including sensors, MEMS, mobile devices, medical sensors, wireless communication devices, near field communication devices, energy harvesting designs, mobile devices, and wireless communication devices. It will focus on how automated circuit sizing and tuning methodologies can be used to enhance existing design expertise to reduce power consumption while trade-off with other circuit performances. Additionally it will be shown how features like circuit sensitivity analysis can be used for confirming design hypotheses. Using such a verification and optimization environment can help systematically and fully explore design's operating, design and statistical design space.","PeriodicalId":366264,"journal":{"name":"2017 30th IEEE International System-on-Chip Conference (SOCC)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 30th IEEE International System-on-Chip Conference (SOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOCC.2017.8225982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Designing circuits for enhanced IoT (“Internet of Things”) applications is one of the current growth driver for the electronics industry. Optimizing such circuits for lowest power consumption while maximize functionality and performance is key for successful implementation of such circuits in the IoT systems. IoT devices are diverse in nature but are typically constrained by limited power availability, limited area budget and the need for modularity of design. The burden of ultra-low-power budget unfortunately doesn't necessarily mean that other performance requirements are relaxed. The tutorial is therefore geared towards designers of IoT devices including sensors, MEMS, mobile devices, medical sensors, wireless communication devices, near field communication devices, energy harvesting designs, mobile devices, and wireless communication devices. It will focus on how automated circuit sizing and tuning methodologies can be used to enhance existing design expertise to reduce power consumption while trade-off with other circuit performances. Additionally it will be shown how features like circuit sensitivity analysis can be used for confirming design hypotheses. Using such a verification and optimization environment can help systematically and fully explore design's operating, design and statistical design space.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
物联网低功耗电路优化
为增强的物联网(“物联网”)应用设计电路是当前电子行业增长的动力之一。优化此类电路以实现最低功耗,同时最大化功能和性能是在物联网系统中成功实施此类电路的关键。物联网设备本质上是多种多样的,但通常受到有限的功率可用性、有限的面积预算和模块化设计需求的限制。不幸的是,超低功耗预算的负担并不一定意味着其他性能要求的放松。因此,本教程面向物联网设备的设计人员,包括传感器、MEMS、移动设备、医疗传感器、无线通信设备、近场通信设备、能量收集设计、移动设备和无线通信设备。它将侧重于如何使用自动化电路尺寸和调谐方法来增强现有的设计专业知识,以降低功耗,同时权衡其他电路性能。此外,还将展示如何使用电路灵敏度分析等功能来确认设计假设。利用这样的验证和优化环境,可以系统地、充分地探索设计的操作空间、设计空间和统计设计空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Content-aware line-based power modeling methodology for image signal processor Power and area evaluation of a fault-tolerant network-on-chip A low-pass continuous-time delta-sigma interface circuit for wideband MEMS gyroscope readout ASIC Lithography hotspot detection: From shallow to deep learning The path to global connectivity — Wireless communication enters the next generation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1