Towards Efficient Analysis of Variation in Time and Space

Thomas Thüm, Leopoldo Teixeira, Klaus Schmid, Eric Walkingshaw, M. Mukelabai, M. Varshosaz, Goetz Botterweck, Ina Schaefer, Timo Kehrer
{"title":"Towards Efficient Analysis of Variation in Time and Space","authors":"Thomas Thüm, Leopoldo Teixeira, Klaus Schmid, Eric Walkingshaw, M. Mukelabai, M. Varshosaz, Goetz Botterweck, Ina Schaefer, Timo Kehrer","doi":"10.1145/3307630.3342414","DOIUrl":null,"url":null,"abstract":"Variation is central to today's software development. There are two fundamental dimensions to variation: Variation in time refers to the fact that software exists in numerous revisions that typically replace each other (i.e., a newer version supersedes an older one). Variation in space refers to differences among variants that are designed to coexist in parallel. There are numerous analyses to cope with variation in space (i.e., product-line analyses) and others that cope with variation in time (i.e., regression analyses). The goal of this work is to discuss to which extent product-line analyses can be applied to revisions and, conversely, where regression analyses can be applied to variants. In addition, we discuss challenges related to the combination of product-line and regression analyses. The overall goal is to increase the efficiency of analyses by exploiting the inherent commonality between variants and revisions.","PeriodicalId":424711,"journal":{"name":"Proceedings of the 23rd International Systems and Software Product Line Conference - Volume B","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 23rd International Systems and Software Product Line Conference - Volume B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3307630.3342414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

Variation is central to today's software development. There are two fundamental dimensions to variation: Variation in time refers to the fact that software exists in numerous revisions that typically replace each other (i.e., a newer version supersedes an older one). Variation in space refers to differences among variants that are designed to coexist in parallel. There are numerous analyses to cope with variation in space (i.e., product-line analyses) and others that cope with variation in time (i.e., regression analyses). The goal of this work is to discuss to which extent product-line analyses can be applied to revisions and, conversely, where regression analyses can be applied to variants. In addition, we discuss challenges related to the combination of product-line and regression analyses. The overall goal is to increase the efficiency of analyses by exploiting the inherent commonality between variants and revisions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对时间和空间变化的有效分析
变化是当今软件开发的核心。变化有两个基本维度:时间变化指的是软件存在于许多版本中,这些版本通常会相互替换(例如,新版本取代旧版本)。空间变异是指设计为并行共存的变体之间的差异。有许多分析可以处理空间上的变化(例如,产品线分析),还有一些分析可以处理时间上的变化(例如,回归分析)。这项工作的目标是讨论产品线分析在多大程度上可以应用于修订,反过来,回归分析可以应用于变量。此外,我们还讨论了与产品线和回归分析相结合的挑战。总体目标是通过利用变体和修订之间固有的共性来提高分析的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enabling Efficient Automated Configuration Generation and Management Accessibility Variability Model: The UTPL MOOC Case Study symfinder: A Toolchain for the Identification and Visualization of Object-Oriented Variability Implementations Applying the QuARS Tool to Detect Variability Towards Efficient Analysis of Variation in Time and Space
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1