2.1 mm-Wave 5G Radios: Baseband to Waves

Ahmed Khalil, I. Eshrah, Amr Elsherief, A. Mehana, M. Abdalla, Mohamed Mobarak, J. Kilpatrick, Brian Hall, A. Ashry, H. Fahmy, Sherif Salim, Russell Kernan, Brian Herdeg, Gary Sapia, M. El-Nozahi, M. Weheiba, Mark D’Amato, C. Bautista, Kasey Chatzopoulos, A. Ghoniem, Yossif Mosa, Daniel Roll, Kerem Ok
{"title":"2.1 mm-Wave 5G Radios: Baseband to Waves","authors":"Ahmed Khalil, I. Eshrah, Amr Elsherief, A. Mehana, M. Abdalla, Mohamed Mobarak, J. Kilpatrick, Brian Hall, A. Ashry, H. Fahmy, Sherif Salim, Russell Kernan, Brian Herdeg, Gary Sapia, M. El-Nozahi, M. Weheiba, Mark D’Amato, C. Bautista, Kasey Chatzopoulos, A. Ghoniem, Yossif Mosa, Daniel Roll, Kerem Ok","doi":"10.1109/ISSCC42613.2021.9365980","DOIUrl":null,"url":null,"abstract":"There are many challenges in building millimeter-Wave (mmW) 5G radios [1] –[3]. Some of the key challenges are the cost, heat dissipation, and array calibration. This paper describes ADI’s full line-up of mmW 5G radios used today, with a focus on the millimeter wave front-end portion, and how it addresses some of these challenges. The radio block diagram, shown in Fig. 2.1.1, is an example of a dual-polarized 24-to-30GHz band mmW radio. All ICs in this radio cover 24 to 30GHz, allowing the same chips to be used in n257, n258, and n261 radios, which reduces the development cost. The radio consists of two domains: BB-IF and mmW. The BB-IF domain contains either an IF transceiver utilizing quadrature baseband data converters and mixers to generate the IF, or data converters (MxFE) to directly synthesize the IF. The former is optimal for narrower bandwidth applications while the latter consumes more power but can support higher bandwidths. The mmW domain consists of a mmW Up/Down converter and a 16-channel, (2 polarizations $\\times 8$ channels per pol) high-performance beamformer (BF). The mmW chips utilize a 45nm RF SOI process, which is optimized for RF performance at the mmW 5G bands. The SOI process is a 12-inch process, hence economically suitable for large-volume applications. The BF linear output power is 12dBm/channel @ 3% EVM using a 400MHz 5G NR waveform. The channel P1dB is 20dBm. Two mmW BFs, cover 24-to-30 and 37-to-44GHz bands, respectively. An implementation of the mmW front-end, consisting of 128 dual-polarized antenna elements, 16 BFs, 4 Up/Down frequency converters (UDCs), and the power-management circuitry has been fabricated and is shown in Fig. 2.1.2. Over-the-air (OTA) measurement results of the fabricated array are presented below. The measurements include the radiation pattern, EIRP, linearity, and combined throughput of four streams. The paper also discusses the following: OTA Performance of ADI’s mmW 5G radios, antenna performance and design aspects, thermal aspects and heat dissipation modelling, and calibration of mmW radios.","PeriodicalId":371093,"journal":{"name":"2021 IEEE International Solid- State Circuits Conference (ISSCC)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Solid- State Circuits Conference (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC42613.2021.9365980","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

There are many challenges in building millimeter-Wave (mmW) 5G radios [1] –[3]. Some of the key challenges are the cost, heat dissipation, and array calibration. This paper describes ADI’s full line-up of mmW 5G radios used today, with a focus on the millimeter wave front-end portion, and how it addresses some of these challenges. The radio block diagram, shown in Fig. 2.1.1, is an example of a dual-polarized 24-to-30GHz band mmW radio. All ICs in this radio cover 24 to 30GHz, allowing the same chips to be used in n257, n258, and n261 radios, which reduces the development cost. The radio consists of two domains: BB-IF and mmW. The BB-IF domain contains either an IF transceiver utilizing quadrature baseband data converters and mixers to generate the IF, or data converters (MxFE) to directly synthesize the IF. The former is optimal for narrower bandwidth applications while the latter consumes more power but can support higher bandwidths. The mmW domain consists of a mmW Up/Down converter and a 16-channel, (2 polarizations $\times 8$ channels per pol) high-performance beamformer (BF). The mmW chips utilize a 45nm RF SOI process, which is optimized for RF performance at the mmW 5G bands. The SOI process is a 12-inch process, hence economically suitable for large-volume applications. The BF linear output power is 12dBm/channel @ 3% EVM using a 400MHz 5G NR waveform. The channel P1dB is 20dBm. Two mmW BFs, cover 24-to-30 and 37-to-44GHz bands, respectively. An implementation of the mmW front-end, consisting of 128 dual-polarized antenna elements, 16 BFs, 4 Up/Down frequency converters (UDCs), and the power-management circuitry has been fabricated and is shown in Fig. 2.1.2. Over-the-air (OTA) measurement results of the fabricated array are presented below. The measurements include the radiation pattern, EIRP, linearity, and combined throughput of four streams. The paper also discusses the following: OTA Performance of ADI’s mmW 5G radios, antenna performance and design aspects, thermal aspects and heat dissipation modelling, and calibration of mmW radios.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
2.1毫米波5G无线电:基带到波
在构建毫米波(mmW) 5G无线电[1]-[3]方面存在许多挑战。一些关键的挑战是成本、散热和阵列校准。本文介绍了ADI目前使用的毫米波5G无线电全系列,重点介绍了毫米波前端部分,以及它如何解决其中的一些挑战。如图2.1.1所示的无线电框图是双极化24至30ghz频段毫米波无线电的示例。该无线电中的所有ic覆盖24至30GHz,允许在n257, n258和n261无线电中使用相同的芯片,从而降低了开发成本。无线电包括两个域:BB-IF和毫米波。BB-IF域包含利用正交基带数据转换器和混频器产生中频的中频收发器,或直接合成中频的数据转换器(MxFE)。前者最适合较窄的带宽应用,而后者消耗更多的功率,但可以支持更高的带宽。毫米波域由一个毫米波上/下转换器和一个16通道高性能波束形成器(2个极化$\乘以8$通道/ pol)组成。mmW芯片采用45nm RF SOI工艺,该工艺针对mmW 5G频段的RF性能进行了优化。SOI工艺是一个12英寸工艺,因此经济上适合大批量应用。BF线性输出功率为12dBm/信道@ 3% EVM,使用400MHz 5G NR波形。信道P1dB为20dBm。两个毫米波频段,分别覆盖24至30 ghz和37至44ghz频段。一个由128个双极化天线元件、16个bf、4个上/下变频器(udc)和电源管理电路组成的毫米波前端实现已经制作完成,如图2.1.2所示。制作阵列的空中(OTA)测量结果如下所示。测量包括辐射方向图、EIRP、线性度和四流的综合吞吐量。本文还讨论了以下内容:ADI毫米波5G无线电的OTA性能、天线性能和设计方面、热方面和散热建模以及毫米波无线电的校准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
10.6 A 12b 16GS/s RF-Sampling Capacitive DAC for Multi-Band Soft-Radio Base-Station Applications with On-Chip Transmission-Line Matching Network in 16nm FinFET A 0.021mm2 PVT-Aware Digital-Flow-Compatible Adaptive Back-Biasing Regulator with Scalable Drivers Achieving 450% Frequency Boosting and 30% Power Reduction in 22nm FDSOI Technology 8.1 A 224Gb/s DAC-Based PAM-4 Transmitter with 8-Tap FFE in 10nm CMOS 14.7 An Adaptive Analog Temperature-Healing Low-Power 17.7-to-19.2GHz RX Front-End with ±0.005dB/°C Gain Variation, <1.6dB NF Variation, and <2.2dB IP1dB Variation across -15 to 85°C for Phased-Array Receiver ISSCC 2021 Index to Authors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1