{"title":"Direct-Write 3D Printing of Interconnects for Fan-Out Wafer-Level Packaging","authors":"Jacob Dawes, M. Johnston","doi":"10.1109/fleps53764.2022.9781559","DOIUrl":null,"url":null,"abstract":"Fan-out wafer-level packaging (FOWLP) is commonly used for manufacturing system-in-package components and multi-chip modules, where multiple integrated circuit dice can be combined in a common, compression-molded epoxy substrate with integrated interconnects and redistribution layers. While highly cost efficient at scale, this approach requires fixed tooling and metallization masks that limit its use for just-in-time configuration or rapid prototyping. In this work, we demonstrate the use of high-resolution 3D-printing for direct-write fabrication of electrical interconnects in conjunction with FOWLP processing. This approach enables both pre-mold deposition, for interconnects embedded in the epoxy substrate, and post-mold deposition, for interconnects fabricated monolithically on the substrate surface. Here, we demonstrate process development and electrical characterization of printed interconnects, along with both pre- and post-mold printed interconnect structures and fan-out for embedded, bare IC dice.","PeriodicalId":221424,"journal":{"name":"2022 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/fleps53764.2022.9781559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Fan-out wafer-level packaging (FOWLP) is commonly used for manufacturing system-in-package components and multi-chip modules, where multiple integrated circuit dice can be combined in a common, compression-molded epoxy substrate with integrated interconnects and redistribution layers. While highly cost efficient at scale, this approach requires fixed tooling and metallization masks that limit its use for just-in-time configuration or rapid prototyping. In this work, we demonstrate the use of high-resolution 3D-printing for direct-write fabrication of electrical interconnects in conjunction with FOWLP processing. This approach enables both pre-mold deposition, for interconnects embedded in the epoxy substrate, and post-mold deposition, for interconnects fabricated monolithically on the substrate surface. Here, we demonstrate process development and electrical characterization of printed interconnects, along with both pre- and post-mold printed interconnect structures and fan-out for embedded, bare IC dice.