{"title":"Progress in the simulation of time dependent statistical variability in nano CMOS transistors","authors":"A. Asenov, S. Amoroso, L. Gerrer","doi":"10.1109/SISPAD.2014.6931616","DOIUrl":null,"url":null,"abstract":"This paper presents an overview of state-of-the-art simulation methodologies to investigate statistical effects associated with charge trapping dynamics and their impact on the reliability projection in decananometer MOSFETs. By means of novel 3-D Kinetic Monte Carlo TCAD reliability simulation technology we tracks the time dependent variability associated with granular charge injection and trapping on pre-existing or stress generated oxide traps. For the first time we take into account the interactions between the statistical variability of the `virgin' transistors introduced by the discreteness of charge and granularity of matter and the stochastic nature of the traps distribution and the trapping process itself. Throughout these 3D statistical TCAD techniques we derive the distribution of threshold voltage shift and degradation time constants in conventional bulk, SOI and FinFET transistors.","PeriodicalId":101858,"journal":{"name":"2014 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SISPAD.2014.6931616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
This paper presents an overview of state-of-the-art simulation methodologies to investigate statistical effects associated with charge trapping dynamics and their impact on the reliability projection in decananometer MOSFETs. By means of novel 3-D Kinetic Monte Carlo TCAD reliability simulation technology we tracks the time dependent variability associated with granular charge injection and trapping on pre-existing or stress generated oxide traps. For the first time we take into account the interactions between the statistical variability of the `virgin' transistors introduced by the discreteness of charge and granularity of matter and the stochastic nature of the traps distribution and the trapping process itself. Throughout these 3D statistical TCAD techniques we derive the distribution of threshold voltage shift and degradation time constants in conventional bulk, SOI and FinFET transistors.