Fuzzy genes: improving the effectiveness of information retrieval

M. Martín-Bautista, M. Vila, D. Sánchez, H. Larsen
{"title":"Fuzzy genes: improving the effectiveness of information retrieval","authors":"M. Martín-Bautista, M. Vila, D. Sánchez, H. Larsen","doi":"10.1109/CEC.2000.870334","DOIUrl":null,"url":null,"abstract":"An improvement in the effectiveness of information retrieval by using genetic algorithms (GAs) and fuzzy logic is demonstrated. A new classification of information retrieval models within the framework of GAs is given. Such a classification is based on the target of the fitness function selected. When the aim of the optimization is document classification, we deal with document-oriented models. On the other hand, term-oriented models attempt to find those terms that are more discriminatory and adequate for user preferences to build a profile. A new weighting scheme based on fuzzy logic is presented for the first class of models. A comparison with other classical weighting schemes and a study of the best aggregation operators of the gene's local fitness to the overall fitness per chromosome are also presented. The deeper study of this new scheme in the term-oriented models is the main objective for future work.","PeriodicalId":218136,"journal":{"name":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2000.870334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

An improvement in the effectiveness of information retrieval by using genetic algorithms (GAs) and fuzzy logic is demonstrated. A new classification of information retrieval models within the framework of GAs is given. Such a classification is based on the target of the fitness function selected. When the aim of the optimization is document classification, we deal with document-oriented models. On the other hand, term-oriented models attempt to find those terms that are more discriminatory and adequate for user preferences to build a profile. A new weighting scheme based on fuzzy logic is presented for the first class of models. A comparison with other classical weighting schemes and a study of the best aggregation operators of the gene's local fitness to the overall fitness per chromosome are also presented. The deeper study of this new scheme in the term-oriented models is the main objective for future work.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模糊基因:提高信息检索的有效性
利用遗传算法和模糊逻辑提高了信息检索的有效性。在GAs框架下,给出了一种新的信息检索模型分类方法。这种分类是基于所选择的适应度函数的目标。当优化的目标是文档分类时,我们处理面向文档的模型。另一方面,面向术语的模型试图找到那些更具歧视性且足以满足用户偏好的术语来构建配置文件。针对第一类模型,提出了一种新的基于模糊逻辑的加权方案。并与其他经典加权方案进行了比较,研究了基因的局部适应度与每条染色体整体适应度的最佳聚合算子。在面向术语的模型中对这种新方案进行更深入的研究是今后工作的主要目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Test-case generator TCG-2 for nonlinear parameter optimisation Accelerating multi-objective control system design using a neuro-genetic approach On the use of stochastic estimator learning automata for dynamic channel allocation in broadcast networks A hierarchical distributed genetic algorithm for image segmentation Genetic learning of multi-attribute interactions in speaker verification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1